MICROBIOLOGY NOTES COLLECTION, TRANSPORT, PROCESSING, AND STAINING OF SPECIMENS

PRINCIPLES OF SPECIMEN COLLECTION

Major goal of microbiology laboratory - aid diagnosis of infectious disease

Goal of specimen collector - maintain viability w/ minimal contamination

FUNDAMENTALS

- Collect in _____ and ____ antibiotics administration (or within 2-3 days for viral infection) Collect in \sim Upper respiratory tract ES MFDTFC
- **Correct** anatomic site for collection
- Proper technique and supplies w/ minimal contamination RB
- Appropriate quantity of specimen
- Container or transport medium designed to maintain viability of organism & avoid hazard from leakage.
- Accurate labeling of spx. With:
 - Specific anatomic site
 - Patient's info
- Immediate transport of spx. to lab
- Provide environment that won't degrade suspected organism

Notify lab if unusual / agents of bioterrorism are suspected

COLLECTION PROCEDURE

Spx. should be collected in sterile containers

- Except for stool
- Swabs not recommended
 - Don't provide sufficient quantity
 - Easily contaminated
 - Can be dried out leading to organism loss
 - Often vortexed in 0.5 1ml of saline or broth for 10 20 secs. to dislodge material from fibers.
 - Recommended for:

 - External ear
 - Eye 0
 - o Genital tract

"wound" is not appropriate specimen label (exact site must be provided)

PATIENT-COLLECTED SPECIMEN

Most effective method for instruction –

NOTED SPECIMEN COLLECTION GUIDELINES

Blood Culture

- Adult 20 ml/ set
- Children 5 10ml/ set

Body Fluids

• ≥1ml (anaerobic transport system)

CSF

- Bacteria & virus ≥ 1ml
- Fungi & AFB **≥ 2 ml**

Fungal Scrapings - wipe nails & skins with alcohol

- Hair 10 12 hairs w/ intact shaft
- Nails clip affected area
- Skin scrape at outer edge of lesion

Urethra

- Insert 2 4 cm into urethra for 2 3 secs.
- Or collect discharge

Nasopharynx

Insert flexible swab thru nose rotate for 5 secs. TY OF MED

Urine

Sputum

Preferred – ______

DO NOT DISTRIBUTE

Preferred – First Early Morning Specimen

PRESERVATION, STORAGE, AND TRANSPORT

Primary Goal

- Maintain specimen as near to its original state as possible w/ minimal deterioration
- Prevent risk to specimen handler

Spx. should be transported to lab ideally within _____, preferably within 2 hours

STORAGE

Specimens that can be maintained @ 4°C for 24 hours

- Urine
- Stool
- Sputum
- Swabs (not for anaerobes)
- Catheters
- Viral specimens

CSF – if not processed, stored @ _____

REFRIGERATED	ROOM TEMPERATURE	
Catheter tip (IV)	Abscess, lesion,	
CSF for virus	wound Body fluids	
Ear: Outer	CSF for bacteria	
Unpreserved feces	Ear: inner	
Feces for Clostridium difficile toxin assay	Feces (unpreserved)	
Sputum	Genital	
Unpreserved urine	Nasal, N/P, throat	
	Tissue	
	Urine (preserved)	
Suprapubic urine should be plate as soon as received.		

PRESERVATION

Specimens that can be preserved by preservatives

- Stool
- Urine

• Boric acid – used to maintain accurate urine colony count

Stool - can be refrigerated

If delayed for 2 hours – can be added to ______

Stool for **Clostridium difficile toxin assay**

- \circ Can be refrigerated
- \circ If delayed >48 hours:
 - Frozen @ -70°C
- ______/______ for ova and parasite (O&P) exam

ANTICOAGULANT

Sodium Polyanethol Sulfonate (SPS) PROPERTY OF MEDT

- Most common anticoagulant used for microbiology spx.
- must not exceed _____
 - <u>concentration</u> & certain anaerobes are inhibited by higher

Heparin – used for viral culture and isolation of Mycobacterium spp. from blood

HOLDING OR TRANSPORT MEDIA

- Usually contains substances that do not promote multiplication of microorganisms but ensure their preservation
- Available in swab collection system

Stuart's and Amie's Transport Medium - commonly used

JEMBEC (James E. Martin Biological Environmental Chamber) System

Used for specimens for ______

SPECIMEN PRIORITY

LEVEL	SPECIMENS	
1	Critical /	Amniotic fluid
	Invasive	Blood
		Brain
		CSF
		Heart valves
		Pericardial
		fluid
2	Unpreserved	Body fluids
CH RF	VIEW N	(not listed for
GIIKL	. VIL VV IN	level 1)
		Bone
		Drainage
		from wounds
		Feces
		Sputum
		Tissue
3	Quantitation	Catheter tip
	required	Urine
		Tissue for
		quantitation
4	Preserved	Preserved
		feces
		Preserved
		urine
		Swabs in
		holding
		medium

(aerobic and
anaerobic)

Level 1 - critical; represent potentially life-threatening illness; from invasive source

Level 2 - unprotected; may quickly degrade or have overgrowth of contaminating flora.

Level 3 - require quantitation; may affect accuracy of quantitation if delayed.

Level 4 – spx. in holding or transport media

UNACCEPTABLE SPECIMENS

- Info on request form doesn't match to spx. RT
- Not submitted in appropriate transport container or leaking container
- Inadequate quantity of spx.
- Spx. transported >2 hours; not preserved **DUN**
- Received in formalin
- Requesting anaerobic culture in spx. in w/c anaerobes are indigenous
- Dried up spx.
- More than 1 source was submitted from the same specimen. Blood culture are exception
- One swab was submitted with multiple requests for various organisms.

NOTE:

- Never discard an unacceptable spx, before contacting a member of health care team.
- Specimen that impossible to recollect / require patient to undergo invasive procedure may need to be processed regardless of the situation.

MACROSCOPIC EXAMINATION

- Swab or Aspirate
- Stool Consistency
- Blood or Mucus present part that is cultured and direct microscopic exam
- Volume
- Fluid clear or cloudy

If presence of gas, foul smell, sulfur granules - ANAEROBIC CULTURE

MICROSCOPIC EXAMINATION

Purpose:

- Determines quality of specimen
- Gives indication of infectious process involved.
- Guides routine culture workup based on the result of the smear
- Dictate the need for nonroutine or additional testina. PRIMARY INOCULATION

TYPES OF CULTURE MEDIA

- Nonselective media supports growth of most nonfastidious microbes o SBP
- Selective media supports growth of one type or group of microbes but not another.
 - o MAC
 - o CNA
- Differential media allows group of microbes based on different characteristics demonstrated on medium. Has dye or alcohol o SBA
- Enriched media/nutritive media contains growth enhancers added to nonselective agar to allow fastidious organisms to flourish.
 - Blood agar, chocolate agar

- Enrichment broth liquid medium designed to encourage growth of small numbers of particular organism while suppressing other flora.
 - $\circ \quad \text{LIM Broth}$
 - Todd-Hewitt w/ CNA
- **Broth media** supplement to agar plates to detect small numbers of most aerobes, anaerobes and microaerophiles
 - Thioglycollate broth
 - Brain-Heart Infusion Agar
 - \circ $\,$ Tryptic Soy Broth $\,$

SPECIMEN PREPARATION

Forms of specimen arrive in lab

- Fluid
- Swab
- Tissue
- FLUID
 - Inoculated directly to selected media
 - Sterile body fluids
 - o Pus
 - o Urine
 - o Sputum
 - Large volume of sterile body fluids
 - If >1 ml centrifuged @ **3000x g for 20 minutes**
 - \circ $\,$ If consistency is thin enough to avoid filter clogging $\,$

DO NOT DISTRIBUTE

- Nalgene filter can be used
- SWAB inoculated directly to culture media
 - Should be submitted on _____
 - One for **culture media**
 - Another swab for **direct smear**

TISSUES

- Can be prepared thru homogenization for culture
 - o It can destroy certain organisms
- Can be **minced** w/ sterile scissors and forceps into small pieces for culture.

ISOLATION TECHNIQUE

- General purpose Isolation Streak
 - Yields semiquantitative estimate of growth
 - o Useful for most specimen

Grading

- 1st quadrant 1+ (light growth)
- PROPERTY OF MEDTECH of 2nd and 3rd quadrant 2+ (moderate growth)
 - - Quantitative isolation
 - o For urine specimen & tissue from burn patients
 - o Uses calibrate loops
 - 0.01
 - 0.001

INCUBATION

- ______ bacteria, AFBs, & viruses
- _____ fungi
- Most routine bacterial cultures are held for 48 72 hours
- Anaerobes and broth cultures held for 5 7 days

Aerobes – grow in ambient air

- 21% O₂
- 0.03% CO₂

Anaerobes – cannot grow in presence of _____

- Atmosphere in anaerobe jars
 - **5 10% H**₂
 - o % CO₂
 - 80 90% N₂
 - **0% O**₂

Capnophiles – requires

- _____% CO₂
- 15% O₂

Candle Jar atmosphere – 3% CO₂

Examples: H. influenzae; N. gonorrhoeae

Microaerophiles – grows in

- . reduced O₂ (5 10%)
- increased CO₂ (8 10%)

Example: Campylobacter jejuni; Helicobacter pylori TY OF MEDTESMEARS REVIEW NOTES

NONROUTINE SPECIMENS

- Implant soak solution
 - Requires large volume and NOT DISTRIBUTE
 - Concentration
- Water sterility specimen
 - Requires concentration
 - Millipore Sampler
 - Uses
- Intrauterine device
 - Cultured for detection of Actinomyces spp.
 - Inoculated into THIO
- Vascular Catheter tips
 - Use for catheter-related infection
 - Uses Maki roll technique

Maki roll technique – 5-7cm segment of catheter is rolled of a blood agar plate 4 times.

Critical Values in Microbiology		
Positive blood culture		
Positive CSF gram stain or culture		
Positive cryptococcal antigen test or culture		
Positive blood smear for malaria		
Streptococcus pyogenes from a sterile site		
Positive acid-fast smears or positive		
Mycobacterium culture.		
Streptococcus agalactiae or herpes simplex		
virus from genital site of pregnant woman at term		
Detection of significant pathogen		

Smears for Swab

- Should not be prepared from swab after used to inoculate culture media. (2 swabs are submitted)
- Prepared by rolling the swab back and forth over contiguous areas of the alass slide to deposit a thin layer of sample material.

Smears from thick liquid

- Swab method swab is immersed in specimen for several seconds
 - Used to prepare thin spread of material in the glass slide

Smears from thick, granular, mucoid materials

- Opaque material must be thinly spread
- Most desirable to have both thick and thin areas
- Granules must be **crushed** to assess their makeup
 - Too hard granules probably don't represent infectious material

Smears from Thin Fluids

- Should be dropped but not spread on slide
- Cytocentrifugation preferred for this type of specimen.

CYTOCENTRIFUGATION

• Excellent for (CSF, BAL)

PROCEDURE

- 1. Small aliquots of fluid (0.1 0.2 ml) are placed into cytocentrifuge holder
- 2. Material is spun for 10 minutes
- 3. Slide is removed. If deposit of cells is too heavy, a portion of cellular deposition can be smeared
- 4. Fixed and decontaminated in 70% alcohol for 5 mins.

MICROSCOPY

MAGNIFICATION

100,000x – for viruses

RESOLUTION – extent to which detail in the magnified object is maintained

CONTRAST – needed to make objects stand out from the background; achieved by staining technique - higlights organisms and allow them to be differentiated.

• If staining is absent - reduce diameter of microscope aperture diaphragm, increasing contrast at the expense of the resolution.

FLUORESCENT MICROSCOPY

- Uses fluorescent microscope
- Uses certain dyes –

Color of fluorescent light depends on:

- Dve
- Light filters

Acridine orange, auramine, FITC

• Requires blue excitation light (450- 490λ)

Calcofluor White

Requires violet excitation light (355-425λ)

TECHNIQUES

- FLUOROCHROMING
 - o fluorescent dye is used alone
 - o direct chemical interaction between dye and component of bacterial cell
 - Most Common Methods:
 - acridine orange
 - binds to _____ (bright orange)
- used in blood cultures _ - for bacteria, fungi, parasitesOPERTY OF MEDTECH REVIE Vused also in <u>Mycoplasma</u>
 - auramine-rhodamine stain
 - for in cell walls of mycobacteria (bright yellow/ orange in greenish background)
 - calcofluor white
 - binds to _____ of fungi
 - also used to visualize
 - IMMUNOFLUORESCENCE
 - fluorescent dyes have been conjugated to specific antibodies
 - Fluorescein isothiocyanate (FITC) most commonly used for conjugation to antibodies (_____

DARK-FIELD MICROSCOPY

- Condenser does not allow light to pass directly through the specimen but directs the light to hit the specimen at an oblique angle.
- Used to detect bacteria that has:
 - Thin dimensions
 - Can't be seen in light microscopy

• Difficult to grow in culture Example -Treponema pallidum

ELECTRON MICROSCOPY

- Uses
 - o Electron visualize small objects
 - Focused on electromagnetic fields to form an image on fluorescent screen
 - Powerful research tools.
 - Not needed for laboratory diagnosis of most infectious disease.
- Allows magnification in **excess of 100,000x**

• GENERAL TYPES

- <u>Transmission electron microscope (TEM)</u> allows visualization of internal structures
- internal structures
 Scanning Electron Microscope (SEM) scan surface of objects; provides ______ of surface structures.

DO NOT DISTRIBUTE

SMEARING

Reasons why organisms grow in culture that was not seen in Direct Smear

- Slow-growing organism was present
- Patient receiving antibiotic treatment prevents growth of organism
- Specimen was not appropriately processed
- Organism is no longer viable
- Organism requires special media for growth.

<u>DIRECT SMEAR</u> – preparation of primary clinical cample received in the laboratory for processing.

Provides mechanism to identify _____ present in specimen.

INDIRECT SMEAR - when

- Primary sample has been processed in culture
- smear contains organisms following purification or growth on artificial media.

<u>STAINS</u>

- Simple stains directed toward coloring the forms and shapes present
- Differential stains directed toward coloring specific components present
- Diagnostic antibody or DNA probe-mediated stain

• Specific at identification of organism

Gram stain (by_____, 1884)

- Fixative heat / methanol
- Primary stain crystal violet (hexamethyl-p-rosanaline chloride) (30
- CHsecs.) ÉVIEW NOIES
- Mordant _____ (no water rinse employed; 30 60 secs.)
- Decolorizer alcohol-acetone (quick)
- Counterstain Safranin (1 minute)

Quantitation of Organisms in Gram Stain			
Many	4+	10-20 / OIO	
Moderate	3+	6-10 / OIO	
Few	2+	3-5 / OIO	
Rare]+	<10 on	
		complete	
		smear	

Quantitation of Cells in Gram Stain				
Many	4+	≥25 / LPO		
Moderate	3+	10-25 / LPO		
Few	2+	2-10 / LPO		
Rare]+	<2 / LPO		
None				

Precaution

- If crystal violet rinsed too vigorously before complexed with iodine
 - wash away and leave poor/no staining of gram-negative organism
- If decolorizer is too vigorous or prolonged
 - Gram-positive complex will be removed; gram-positive organism will not stain.
- Decolorizer is insufficient
 - \circ $\,$ False gram-positive organisms in thicker areas of sample
- Presence of inflammatory cells key indicator of infectious process.

BASIC FUCHSIN – alternative counterstain for faintly-staining gram negative organisms (ex. *Campylobacter; Helicobacter*) ACID FAST STAINING

Most common Acid-Fast staining methods

- Auramine-rhodamine
 - Ziehl-Neelsen
- Kinyoun

.

- Fluorescent Stain
 - o Primary stain auramine-rhodamine T stain (25 mins.)
 - Decolorizer _____ (2 mins)
 - (0.5% HCl in 70% alcohol)
 - Counterstain potassium permanganate (4 mins)

POSITIVE RESULT - BRIGHT YELLOW/ ORANGE against GREENISH BACKGROUND

REPORTING	
No. of acid-fast bacilli	Report
1 – 20	Number seen
21 – 80	Few
81 – 300	Moderate

- >300 Numerous
 - - Heat allows penetration of stain into waxy surface of microorganism
 - Primary stain carbolfuchsin (5 minutes)
 - o Decolorizer acid-alcohol (3% HCl in 95% ethanol)
 - Counterstain methylene blue (1 min)

Kinyoun Method (______

- Primary stain carbolfuchsin (5 mins.)
- Decolorizer acid-alcohol
- o Counterstain methylene blue (1 min)

NOTE

- has higher concentration of phenol in primary stain, therefore heat is not required.
- Identification of a single acid-fast bacillus in a single sputum is considered diagnostic.
- Modified Kinyoun Method (for partial acid-
- fast) o Primary stain -
- carbolfuchsin (5 mins.)
- Decolorizer _____
- Counterstain **methylene blue** (30 secs)

FUNGAL STAIN

Most common fungal stains are:

- KOH
- PAS
- Grocott's Methenamine Silver Stain
- Calcofluor White

Calcofluor White

- colorless dye
- binds to _____ and ___
- for **fungal elements**
- fluoresce maximally at 440 nm

Evans Blue – counterstain

RESULT: fungi appears bright apple-green / blue-white fluorescence

SPECIMEN COLLECTION & PROCESSING (PARASITOLOGY)

STOOL COLLECTION (TYPICAL)

- one spx. collected every other day
- total of _____ collected in _____

Diagnosis of Amoebiasis

If patient in therapy of BISMUTH, BARIUM, & MINERAL OIL

FORMALIN

- 5% protozoan cyst
- 10% helminth eggs & larvae
- must be fixed within 30 MINS.

ADVANTAGES

- easy to prepare
- preserves spx. for up to several years
- long shelf-life

POLYVINYL ALCOHOL – for permanent-stained smear

- has plastic powder
- most often combined with schaudinn solution
- SCHAUDINN SOLUTION
 - Zinc sulfate

Copper sulfate PROPERTY OF MEDTEC Mercuric chloride (base) TES

- collect **PRIOR TO THERAPY**
- not until 5-7 or 4 5 DAYS after completion of therapy

stained smear

DELAYED FOR 2 WEEKS - if patient's in antibiotic/antimalarials

acceptable amount of stool (walnut-size)

Stool

•

- Bacterial infection 1 a day for 3 days
- Parasitic infection _____
- Stool to preservative ratio –

FOR TROPHOZOITE MOTILITY DEMONSTRATION

- FRESH SPX. IS REQRUIED
- Examined in

STOOL FIXATIVES – 3:1 fixative : stool ratio

SODIUM ACETATE FORMALIN – for concentration technique & permanent

Can be used for modified-acid fast stain for coccidian oocysts

PROCESSING

MACROSCOPIC- must be FRESH, UNPRESERVED.

Consistency

possible to see cyst

• - trophozoite

Color – brown (normal color)

MICROSCOPIC EXAM

- DIRECT WET PREP
 - To detect motile trophozoite
 - Used unfixed specimen

- o 0.85% saline
- Glass slide 3 x 2 inch-size
- 22-mm square cover slip
- o _____ temporary seal
- DIRECT WET PREP
 - Enhance details of cyst
 - Drop of lugol's or D' Antoni's Formula
- BUFFY COAT SLIDES
 - Oxalated / citrated blood
 - Placed in **wintrobe tubes**
 - o 30 mins. @ 100 x g
 - o For _____

CONCENTRATION TECHNIQUE

- Detects small no. of parasite
- Best to detect helminth eggs and larvae 0

ISTRIBUTE Types • Floatation

- Sedimentation
- FECT (FORMALIN ETHYL ACETATE SEDIMENTATION)
 - Most widely used
- **o** ZINC SULFATE FLOATATION TECHNIQUE
 - Zn sulfate SG –
- **o KNOTT TECHNIQUE**
 - o 1 ml blood
 - 10 ml 2% formalin
 - 1 min @ 500 x g

PERMANENT STAINS

0

Sample of choice –

Wheatly Trichrome - most widely used Iron Hematoxylin – for excellent morphology of intestinal protozoa

OTHER SPECIMENS ASIDE FROM STOOL

• DUODENAL MATERIAL

- 0
- Cryptosporidium
- o Isospora belli
- S. stercoralis
- Fasciola hepatica
- C. sinensis

• SIGMOIDAL MATERIAL (COLON)

• E. histolytica

 Coccidian parasite
 Microsporidia **PROPERTY OF MEDTEC**

- CELLOPHANE TAPE PREP
 - o ___
 - Taenia spp.

• **BLOOD – Giemsa stain** is preferred.

- L. donovani
- Trypanosoma spp.
- Plasmodium spp.
- Babesia spp.
- Microfilaria
- CSF
 - Naegleria spp.
 - Acanthamoeba
 - o T. gondii
 - Microsporidia 0
 - T. solium cysticercus

• Echinococcus spp.

- **o TISSUE**
 - o Leishmania
 - T. gondii
 - Trypanosoma
 - T. spiralis

• SPUTUM

0

- S. stercoralis
- o Microporidia
- E. histolytica
- E. gingivalis
- A. lumbricoides
- o Hookworm

• URINE

- S. haematobium
- T. vaginalis
- o Microfilaria

• EYE SPECIMENS

- Acanthamoeba spp.
- o T. gondii
- o Loaloa

O SKIN SNIPS

• O. volvulus

• NASAL DISCHARGE

• N. fowleri

• MOUTH SCRAPINGS

- E. gingivalis
- o T. tenax

CULTURE MEDIA

ACETATE AGAR

Purpose – differentiate E. coli from Shigella spp.

Components:

- Acetate carbon source
- Bromthymol blue pH indicator

RESULT:

PROPERTY OF MEDTECH Green – negative (didn't utilized acetate) Blue – positive (utilized acetate)

DO NOT DISTRIBUTE

ALKALINE PEPTONE WATER

Purpose – for recovery of And Aeromonas

spp. Components:

• 0.5 - 1.0% NaCl - to recover Vibrio spp.

BACTEROIDES BILE ESCULIN AGAR

Purpose – for isolation of Bacteroides fragilis group Components:

- **Oxgall** separates bile-resistant & bile-sensitive species. •
- 1% esculin & ferric ammonium citrate -
 - to visualize esculin hydrolysis
 - (+) reaction dark brown or black

BILE ESCULIN AGAR

Purpose - used to isolate & identify group D streptococci and enterococci.

Components:

- **Oxgall** inhibits most gram (+) organisms
- Esculin differential component

Esculin -----> Esculetin

Esculetin + Ferric citrate
insoluble iron salts (black)

NOTES:

- Addition of vancomycin used to detect vancomycin-resistant streptococci & enterococci
- Addition of azide inhibits gram-negative organism OF MEDTECH Vitamin & IEW N

BISMUTH SULFITE AGAR

Purpose - isolation of

DO NOT DISTRIBUTE

Components:

- Selective ingredients inhibits gram (+) bacteria
 - Bismuth sulfite
 - Brilliant green
- Ferrous sulfate reacts to H2S to produce black ppt.

COLONIES

- Salmonellaserotype Typhi black surrounded with metallic sheen
- $_{\odot}$ Serotype Gallinarum, Cholerasuis, Paratyphi light green

KANAMYCIN AND VANCOMYCIN BLOOD AGAR

Purpose – for isolation of obligate gram (-) anaerobes particularly *Bacteroides spp.*

Components:

- Antimicrobials
 - Kanamycin
 - Vancomycin

LAKED BLOOD AGAR W/ KANAMYCIN & VANCOMYCIN & VITAMIN K

Purpose - for isolation of Bacteroides and Prevotella

spp. Components:

- Antimicrobials
 - Kanamycin
 - Vancomycin
- Laked erythrocytes (lysed by freezing)

NOTE: helpful in isolation of Prevotella melaninogenica

RABBIT BLOOD AGAR

Purpose – for recovery and demonstration of beta- hemolysis of Haemophilus spp. & Gardnerella vaginalis

BORDET – GENGOU BLOOD AGAR

Purpose – for isolation _____ & B. parapertussis

Components:

- Selective agents:
 - Penicillin
 - Methicillin
 - cephalexin
- Peptone
- Glycerol
 - Potato infusion
 - Defibrinated sheep blood (sterile)
 - 15 30% Blood enrichment (3-6 ml/20-mltube)

NOTE: plate must be held for **5 days, but not more than 7 days**, before regarded as negative

BRAIN-HEART INFUSION BROTH

Purpose – recommended for cultivation of pneumococci for bile solubility test

Components:

- Brain & Beef heart provide nutrients
- Peptone
- Glucose
- NaCl
- Buffers

 NOTE: 6.5% NaCl can be added - to differentiate salt- tolerant enterococci

 from streptococci.

 PROPERTY OF MEDTE(

BUFFERED CHARCOAL YEAST EXTRACT (BCYE) AGAR

Purpose – for isolation of Legionella spp. Components:

- Ferric pyrophosphate provides Iron OT DISTRIBUT
- Enhances growth of Legionella
 - Yeast extract
 - Alpha-ketoglutarate
 - L-cysteine
- Activated charcoal absorb toxic compounds from organism's metabolism

NOTE:

- can be used to isolate Francisella & Nocardia spp.
- Legionella spp. Not be visible til 3-5 days after inoculation

WADOWSKY - MODIFICATION

Components:

- Inhibitors of Gram (-) organism
 - Glycine
 - Polymyxin B
- Vancomycin inhibits gram (+) cocci
- Anisomycin inhibits fungi
- Differential components:
 - Bromcresol purple
 - Bromthymol blue

RESULT: *L.* pneumophila colonies – light blue w/ pale green tin

BURKHOLDERIA CEPACIA AGAR

Purpose – isolate B. cepacian from respiratory spx. of patients with cystic fibrosis

Components:

- Inhibitors inhibits gram (+) & gram (-)
 - Crystal violet
 - Bile salts
 - Polymyxin B
 Ticarcillin
 - Inorganic salts
 - Peptones
 - Pyruvate
 - Phenol red pH indicator

CAMPYLOBACTER BLOOD AGAR

Purpose – for isolation of Campylobacter spp. Components:

- Brucella agar base medium
- **Sodium bisulfite** lowers redox potential, enhancing recovery of microaerophilic organism.
- 10% sheep blood
- Inhibitors
 - Vancmycin
 - Trimethoprim prevents Proteus
 - Polymyxin B

- Amphotericin B prevents fungi
- Cefoperazone antipseudomonal

Colony characteristic

- Campylobacter spp.
 - $_{\circ}$ $\,$ Flat, gray, nonhemolytic, raised or mucoid $\,$
 - \circ $\,$ Some may be tan or slightly pink $\,$
 - May appear swarming / spreading across surface of plate

CETRIMIDE AGAR (pseudosel agar / Psedomonas- selective agar)

Purpose – for Pseudomonas spp. (except for P. fluorescens)

Components:

- Inhibitor
 - **Cetrimide** (cetyl ptrimethyl ammonium obromide EDTE 0.4% DILUTE GELATIN MEDIUM
 - Pyocyanin production Stimulator Magnesium chloride
 - Potassium sulfate
- Low Iron content stimulates pyoverdin prod.

COOKED MEAT (CHOPPED MEAT GLUCOSE) MEDIUM

Purpose – useful in cultivation of anaerobes esp. Clostridium spp.

Components:

- Solid Meat Particles initiates growth from very small inoculum
- Peptone
- Beef heart
- Dextrose

CYCLOSERINE CEFOXITIN FRUCTOSE AGAR (CCFA)

Purpose – for isolation and identification of Clostridium difficile Component:

- Inhibitors inhibits intestinal normal flora
 - Cycloserine

o Cefoxitin

- Fructose
- Neutral red pH indicator

OTHER VARIATIONS

- 1st variation
 - Mannitol (instead of fructose)
 - Bromthymol blue pH indicator
- 2nd variation
 - o Addition of egg yolk suspension
 - Detection of lipase and lecithinase activity
 - COLONY CHARACTERISTIC
 - C. difficile yellow colony
 - In UV light gold- yellow

Purpose – useful in differentiation of:

- Nocardia spp. from one another
- Streptomyces spp.

COLONY CHARACTERISTICS

- N. asteroids doesn't grow / grows poor
- N. brasiliensis compact, rounded colonies
- Streptomyces spp.
 - Poor to good growth
 - With stringy or flaky morphology

EGG YOLK AGAR (McClung Toabe Agar)

Purpose – for detection of lecithinase, lipase, protease activity

Component - Egg emulsion

• Provides lecithin, lipids, and proteins

RESULTS:

- Lecithinase activity zone of opacity
- Lipase activity iridescent sheen around surface of colonies

Protease activity - clearing of medium

HAEMOPHILUS TEST MEDIUM

Purpose

- for susceptibility testing of Haemophilus
- also for broth minimal inhibitory concentration (MIC)

Components:

- Beef
- Yeast
- Casein extract
- Hematin
- NAD

FLETCHER SEMISOLID MEDIUM Purpose - for Leptospira spp.

Component: Rabbit serum w/ hemoglobin – enrichment Growth: turbidity (examined in dark-field microscope)

HEKTOEN ENTERIC AGAR

Purpose

- for direct isolation of enteric pathogens
- for indirect isolation from selective enrichment broth

Components:

- bile salt selective component
- lactose
- salicin
- sucrose
- bromthymol blue pH indicator
- for detection of H2S gas
 - sodium thiosulfate
 - o ferric ammonium citrate

NOTE:

- SHOULD NOT BE AUTOCLAVED
- AVOID OVERHEATING

COLONY CHARACTERISTICS

- Most nonpathogen
 - bright orange to salmon-pink
- Salmonella & Shigella spp.
 - Green to blue-green colonies

LIM BROTH (Modified Todd-Hewitt Broth)

Purpose – for isolation of Streptococcus agalactiae

Component:

- Peptone
- PROPERTY OF MEDTECH Veast extract W NOTES
 - Inhibitors for gram (-)
 - Colistin
 - Nalidixic acid

LOEFFLER COAGULATED SERUM SLANT

Purpose – for primary recovery of C. diphtheriae

Component:

- Serum (high content)
- Animal heart muscleDextrose
- DextiEgg
- NaCl

MacCONKEY AGAR

Purpose – selects for Enterobacteriaceae & other gram (-) rods Components:

- Inhibitors
 - Bile salt

• Crystal violet

- Lactose sole carbohydrate source
- **Neutral red** pH indicators

NOTE:

- Enterococcus spp. may produce tiny colonies
- MAC w/out crystal violet used to help identify mycobacteria

MacCONKEY SORBITOL AGAR

Purpose – used to isolate E. coli O157:H7 D-sorbitol is substituted for lactose

MALONATE BROTH

Purpose – identification of Salmonella spp.

Component:

- Sodium malonate carbon source PERTY OF MEDTECH Diphosphopyridine nucleotide ES
 Glucose
- Glucose
- Yeast extract
- Bromthymol blue pH indicator

DO NOT DISTRIBUTE

- REACTION Prussian blue color – utilized malonate
 - green (no change of color) no growth

MANNITOL SALT AGAR

Purpose – for recovery & identification of staphylococci

Components:

- 7.5% NaCI inhibits gram (-) & (+) except staphylococci
- Mannitol carbohydrate source
- pH indicator

COLONY CHARACTERISTICS

• S. aureus – yellow zone in colonies

NOTE: Enterococcus spp.- may able to grow & weak mannitol fermenter

MOTILITY TEST MEDIUM

Purpose - to determine if organism is motile or nonmotile

NOTE: add 1% triphenyltetrazolium chloride - to enhance detection of motility

MODIFIED THAYER-MARTIN AGAR

Purpose – for recovery of N. gonorrhoeae & N. meningitidis

COMPONENTS

- Hemoglobin
- Vitamins

- NAD
 - Glutamine
 - Cornstarch absorb inhibitory substances
 - Inhibitors
 - Vancomycin
 - Colistin 0
 - Nystatin prevents fungal growth 0
 - Trimethoprim prevents Proteus swarm

Martin-Lewis Agar (Components)

- Anisomycin (20ug / mL) substitute for nystatin
- Vancomycin (4ug/mL) higher conc. Than MTM

MUELLER-HINTON AGAR

Purpose – for susceptibility testing of organisms in antimicrobial agents. COMPONENTS:

- Animal infusion
- Casein extract
- Starch

NOTE:

- Add 5% sheep blood to perform susceptibility testing on streptococci
- Add <u>heated / chocolatized SRBC</u> for fastidious organism (Haemophilus & Neisseria)
- Ca²⁺ & Mg²⁺ concentration critical in testing of *Pseudomonas* isolates w/ aminoglycoside antibiotics

MUELLER-HINTON AGAR W/ 2% NaCl

Purpose – for detection of MRSA

Cefoxitin & oxacillin - used for detection of MRSA (in Kirby-Bauer or Etest)

MHA w/ 4% NaCl & 6ug OXACILLIN

Purpose – to screen S. aureus isolates selectively for resistance to oxacillin or nafcillin

NEW YORK CITY MEDIUM

Purpose – used also for N. gonorrhoeae & N. meningitidis

COMPONENTS:

- Hemoglobin- from lysed horse RBC
- Yeast dialysate
- Horse plasma
- Inhibitors
 - Vancomycin
 - Colistin
 - Amphotericin B
 - Trimethoprim

NOTE: also supports growth for **Mycoplasma** as well as Ureaplasma urealyticum

O-F POLYMYXIN B-BACITRACIN-LACTOSE AGAR

Purpose – for isolation of Burkholderia cepacia

INHIBITORS:

- Polymyxin B
- Bacitracin

PHENYLETHYL ALCOHOL AGAR

Purpose – for isolation of gram (+) cocci & rods COMPONENT:

• Phenylethyl alcohol – inhibits facultative gram neg. rods NOTE: Bacillus anthracis will not grow in this medium

POTASSIUM TELLURITE BLOOD AGAR

Purpose – for isolation of C. diphtheriae

COMPONENTS:

Cystine Potassium tellurite – inhibits gram (-) organisms, staph, strep, while allowing growth of C. diphtheriae

NOTE:

• Some Staphyloccocus, gram (-) bacilli, yeast will overcome inhibition

COLONY CHARACTERISTICS

- C. diphtheriae dull, gray black (reduction of tellurite)
- **Diphtheroids** light gray-green
- Staphylococcus large, glistening, jet black
- Gram (-) bacilli & yeast dull, gray-black (larger)

PPLO (Pleuropneumonia-like organism) Agar

Purpose – used to isolate Mycoplasma spp.

Component:

- NaCl
- Agar
- Antimicrobials

REGAN-LOWE MEDIUM

Purpose – for isolation of B. pertussis & B. parapertussis

Components:

- Beef extract
- Horse blood
- Niacin
- Pancreatic digest
- Neutralizers
 - Charcoal
 - o Starch
- Cephalexin selective agent ROPERTY OF MEDTE SP-4 BROTH & AGAR

COLONY CHARACTERISTICS

- B. pertussis domed, shiny, transparent, and tiny; mercury droplet
 - appearance

NOT DISTRIBUTE

SALMONELLA-SHIGELLA AGAR

Purpose - selection of Salmonella & some strains of Shigella spp. from stool

Components:

- Inhibitors:
 - Bile salts
 - o NaCl
 - Brilliant green
- Lactose carbohydrate source
- Neutral red pH indicator
- For detection of H2S gas
 - Sodium thiosulfate
 - Ferric ammonium citrate

NOTE: HEAVY INOCULUM OF STOOL should be plated on SS agar – because medium is very inhibitory

SELENITE BROTH

Purpose – recovery of **low numbers** of Salmonella and some strains of Shigella spp. from stool

Component:

- Sodium selenite inhibitor; effective at neutral pH
- Maintains neutral pH
 - Lactose
 - Phosphate buffers

NOTE: 1-2g of stool should be inoculated

Purpose – primary isolation media for

Components:

- Yeast
- Preformed nucleic acid
- Fetal bovine serum supplies cholesterol
- Inhibitors
 - Penicillin
 - Amphotericin B
 - Polymyxin B

STREPTOCOCCUS-SELECTIVE AGAR

Purpose - for isolation primarily for beta-hemolytic streptococci

Component:

- Columbia agar base
- Maltose enhances prod. Of streptolysin
- Inhibitors
 - Polymyxin B
 - Neómycin

In order formulation, with:

- Oxolinic acid
- Colistin

TETRATHIONATE BROTH

Purpose – recovery of Salmonella except serotypes

- Typhi
- Arizonae •

Components:

- Inhibitors
 - Iodine-potassium iodide solution (added)
 - Bile salt in conjunction with thiosulfate PROPERTY
 - Brilliant green
 - Crystal violet

THIOSULFATE CITRATE BILE SALT SUCROSE AGAR

Purpose – isolation of Vibrio spp.

O NOT DISTRIBUTE

Components: • Inhibitors

- Sodium citrate
- Sodium thiosulfate
- Oxgall
- Bromthymol or thymol blue pH indicator
- For H2S detection
 - Sodium thiosulfate
 - Ferric citrate
- Sucrose carbohydrate source

COLONY CHARACTERISTICS

- Sucrose fermenters yellow
 - Vibrio cholerae
 - Vibrio alainolyticus
- Non-sucrose fermenters blue-green colonies

- Vibrio parahaemolyticus
- Vibrio vulnificus
- Other organism blue colonies
 - Pseudomonas
 - Plesiomonas 0
 - Aeromonas

NOTE: Heavy inoculum should be applied

TINSDALE AGAR

Purpose – used for isolation of C. diphtheriae

COMPONENTS:

• Inhibitors

• Potassium tellurite (high concentration)

- Cystine
- _ Thiosulfate_ OF MFDT

COLONY CHARACTERISTICS

- Corynebacterium spp. gray to black colonies
 - C. diphtheriae with brown halo
 - C. ulcerans & pseudodiphthericum
 - Dark halo
- Proteus mucoid
- Staphylococci & Streptococci (rare)
 - Dark colonies

TODD-HEWITT BROTH W/ GENTAMICIN & NALIDIXIC ACID

Purpose – used to arow streptococci from vaginal & rectal swab for serotyping

COMPONENT:

- Peptone
- Beef heart infusion
- Glucose
- Inhibitors
 - o Gentamicin
 - Nalidixic acid

VAGINALIS AGAR

Purpose – isolation of Gardnerella vaginalis

Components:

- Columbia agar base
- Inhibitors
 - Colistin
 - Nalidixic acid
 - Nystatin

XYLOSE-LYSINE-DESOXYCHOLATE AGAR

Purpose – used to isolate Salmonella and Shigella

Components:

- Sodium desoxycholate inhibitor
- Sucrose
- Lactose
- Xylose high concentration ROPERTY OF MED **Purpose** – for cultivation of Mycobacterium spp. Phenol red – pH indicator
- For H2S detection
 - Sodium thiosulfate sulfur source

Ferric ammonium citrate **NOT DISTRIBUTE**

COLONY CHARACTERISTICS

- Yellow colonies ferments excess carbohydrates • E. coli
- Yellow colonies w/ black centers ferments excess carbohydrates; H₂S producers
 - Citrobacter spp.
 - Proteus spp.
- Colorless or red colonies
 - Shigella spp.
- Red colonies
 - Salmonella spp.
 - Edwardsiella spp.

MEDIA FOR MYCOBACTERIA

AMERICAN TRUDEAU SOCIETY MEDIUM

• Egg-based

Purpose – isolation of M. tuberculosis

Component:

- Eggs provides fatty acid •
- Potatoes carbon source
- Malachite green inhibitor •

LOWENSTEIN-JENSEN MEDIUM

Component:

- Potato flour
- Egg
- Glycerol
- Asparagine for max. production of niacin by certain ٠ Mycobacterium spp.
- Malachite green inhibitor

MODIFICATIONS

- LJ medium w/ 5% NaCl to aid in identifying rapid growers
- Gruft modification more selective Components:
 - Selective agents
 - Penicillin (50 U/ml)
 - Nalidixic acid (35 ug/mL)
 - **Ribonucleic acid** (0.05 ug/ml)
 - Increases rate of mycobacterium isolation

- <u>Petran and Vera modification</u> permits gentler decontamination or digestion procedures Components:
 - Selective agents (added):
 - Cyclohexamide
 - Lincomycin
 - Nalidixic acid <u>MIDDLEBROOK 7H10 & 7H11</u>

<u>AGARS</u> Purpose – used to cultivate Mycobacterium spp.

NOTE: Isoniazid-resistant strains grows better in this medium

Components (7H11)

 Casein hydrolysate – stimulates growth of drug- resistant Mycobacterium tuberculosis

Components (Both)

- Oleic-acid-dextrose-catalase (OADC) -simulates egg
 components DO NOTDISTRIBUTE
 - Oleic acid- fatty acid used by mycobacteria
 - **Dextrose** for energy production
 - Catalase neutralize toxic peroxidase
- Albumin inhibits toxic agents; source of CHON
- Malachite green inhibitor

MITCHISON 7H11 SELECTIVE AGAR

Component:

- Inhibitors:
 - o Amphotericin B
 - Carbenicillin
 - Polymyxin B
 - Trimethoprim

MEDIA w/ BROMTHYMOL BLUE

- Acetate agar
- BCYE
- CCFA
 Hektoen Enteric Agar
- Malonate Broth

w/ BROMCRESOL PURPLE

- Wadowsky-Yee BCYE
- CCFA
- Moeller
- LIA

w/ NEUTRAL RED

Sorbitol McConkey

w/ PHENOL RED

- Burkholderia cepacia Agar
- TSI
- Kligler
- MSA

MOLECULAR DIAGNOSTICS

POLYMERASE CHAIN REACTION

- DENATURATION 94 95 degree Celsius (15 30 secs)
 - For dsDNA separation
- PRIMER ANNEALING 45 65 degree Celsius (30 secs. 2 mins.)
 - Anneals primer to target DNA

- PRIMER EXTENSION 68 72 degree Celsius
 - Synthesis of new strands of DNA

PCR COMPONENTS

- Template DNA target for PCR
- Oligonucleotide Primers starts synthesis new strands of DNA
- Thermostable DNA synthesizes new strands of polymerase of DNA
- Magnesium required by DNA polymerase for proper reaction
- Buffer ensures proper conditions and pH for DNA polymerase
- **Deoxynucleotides** used by polymerase to synthesize new DNA
- Thermal Cycler heats and cools PCR cycle steps.

ANTIMICROBIAL SUSCEPTIBILITY TEST

AST STANDARDIZATION

- McFarland Turbidity Standards O NOT DISTRIBUTE
 - \circ **1% H₂SO₄**
 - 1.175% BaCl₂

<u>0.5 McFarland</u> – most commonly used

Growth Medium -

- o pH-**7.2-7.4**
- \circ cation concentration
- o blood and serum components
- o thymidine content

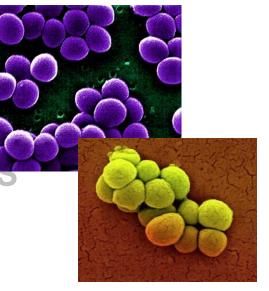
TESTING MEDIUM FOR DIFFERENT ORGANISM

Organism	Media	I	noculum siz	e	Incubatio n
		Broth Dilutio n	Agar dilution	Disk diffusio n	
Enterobacteriace ae P. aeruginosa Enterococci	Mueller- Hinton	5 x 10⁵ cfu/Ml	1 x 10⁴ cfu/spot	1.5 x 10 ⁸ cfu/ml	35°C; air 16 – 20 hrs.
Staphylococi	MH w/ 2% NaCl				30-35° C; 5-10% CO ₂
Streptococcus	MHA w/ 5% Sheep's Blood	TES	Not needed for s. pneumonia e		35°C 5-10% CO2
H. influenzae N. meningitidis	HTM MH w/ 2-5% lysed horse blood		1 x 10⁴ cfu/spot		20 – 24 hrs 35°C; 5- 7% CO ₂ ; 24 hrs.
N. gonorrhoeae	GC agar + supplemen ts	None			35°C; 5% CO ₂ ; 24 hrs.
Anaerobes	Brucella BA w/ Hemin	1 x 10⁴ cfu/ml	1 x 10⁵ cfu/spot		Anaerobi c, 35- 37°C; 48 hrs.

AUTOMATED ANTIMICROBIAL SUSCEPTIBILITY SYSTEMS		
Vitek 2	 64-well; has specific concentration of antibiotics Advanced Expert System (AES) 	
MicroScan WalkAway	 Microdilution manullary inoculated with multiprong device 	
Phoenix System	 Convenient, albeit manual, gravity-based inoculation process Growth monitoring – based on redox indicator system 	

SUPPLEMENTAL METHODS FOR ANTIMICROBIAL RESISTANCE DETECTION		
Oxacillin Agar screen	For staphylococcal resistance to	
	penicillinase-resistant penicillin	
Vancomycin agar screen	For enterococcal resistance to	
	vancomycin <u>pietpipii</u>	
Aminoglycoside screens	For acquired enterococcal high-	
	level resistance to aminoglycosides	
	that would compromise synergy with	
	a cell wall-active agent	
Oxacillin disk screen	For streptococcus resistance among	
	S. aureus resulting from efflux	
Cefoxitin disk test 30 ug	To improve detection of oxacillin-	
	resistant CoNS	
Aminoglycosides	For serious enterococcal infections,	
	and acquired high-level resistance	

STAPHYLOCOCCUS & MICROCOCCUS


- Gram (+) cocci
- Facultatively anaerobes (except for S. saccharolyticus OBLIGATE ANAEROBE)
- In tetrads or in clusters
- Catalase (+)
- Oxidase (+)
- Non-motile
- Grows in **7.5 10% NaCl**

Characteristics:

<u>COLONY</u>

- Produced after 18-24 hrs.
 Medium-sized (4-8 um)
 <u>COLORS:</u>

 <u>COLORS:</u>
 Cream-colored
 White
 Rarely light gold
 - o "_____

HUMAN NARIS (NOSTRILS) – PRIMARY RESERVOIR FOR STAPHYLOCOCCI S. aureus Disease Association

,,

- Folliculitis
- Furuncles (Boil)
- Carbuncles
- Bullous impetigo
- Scalded skin syndrome / Ritter's Disease / Pemphigus neonatorum
- Toxic Shock Syndrome
- Toxic Epidermal Necrolysis
- Food poisoning
- Staphylococcal pneumonia
- Osteomyelitis

• Septic arthritis (children)

S. aureus Virulence Factors:

- STAPHYLOCOCCAL ENTEROTOXINS
 - Stable @ 100°C

Enterotoxin	Disease Association
B (10%), A (78%), D (38%)	FOOD POISONING
B, C, G, I, F	TOXIC SHOCK SYNDROME

Enterotoxin B – assoc. w/ staphylococcal pseudomembranous colitis Enterotoxin F – former name for TSST-1 (assoc. w/ using of tampons)

• Other Virulence Factors

Virulence Factor	Function and role in disease
Alpha-hemolysin	Lyses: RBCs, platelets, Macrophages
	Causes: Severe Tissue Damage
Beta-hemolysin (Sphingolmeylinase C)	
	 Enhance hemolysis @ 37°C & 4°C
	Exhibited in CAMP test
	Acts on sphingomyelinase of RBC
Staphylococcal enzymes	Protease DISTRIBUT
	 Lipase
	 Hyaluronidase (Duran-Reynal
	Factor)
	Staphylocoagulase
	Facilitates spread of infection (protease, lipase, hyaluronidase)
Panton-Valentine Leukocidin (PVL)	Exotoxin lethal to PMNs
	 Assoc. w/ gamma-hemolysin
	Causes:
	-severe cutaneous infection
	 necrotizing pneumonia
	• Assoc. w/:
	-community-acquired staph
	infection
	antiphagocytic

OTHER STAPHYLOCOCCI				
Organism	Virulence factor	Disease association		
S. epidermidis	Biofilm Delta toxin Poly-γ-glutamic acid	 Prosthetic valve endocarditis (most common) Nosocomial infection. 		
S. saprophyticus	Adheres to epithelial lining	UTI;() – significant		
S. lugdunensis	mecA gene for oxacillin resistance	UTI and endocarditis Catheter-related bacteremia		
S. haemolyticus	Vancomycin resistance	UTI and endocarditis		

TESTS TO DIFFERENTIATE STAPHYLOCCOCUS & MICROCOCCUS

TEST	STAPHYLOCCOCUS	MICROCOCCUS
Furoxone-Tween 80-	-	+
ORO Agar (growth)		
Lysosome (50-mg disk)	Resistant	Susceptible
Anaerobic acid prod.	+	-
From glycerol in		
presence of		
erythromycin		
O/F Test	Fermenter	Oxidizer
Modified oxidase	-	+
Bacitracin ()	Resistant <10mm	Susceptible >10mm
Furazolidone (100 ug)	Susceptible	Resistant
Lysostaphin (200ug/ml)	Susceptible	Resistant
	· · · · · · · · · · · · · · · · · · ·	

Organism PYR VP Test	
----------------------	--

S. aureus	_	+
S. lugdunensis	+	+
S. intermedius	+	-
S. schleiferi	+	+

COAGULASE TEST: differentiates S. aureus from CoNS; uses rabbit or pig plasma

Coagulase (+) Staphylococci:

- S. delphini
- S. aureus
- S. hyicus
- S. intermedius
- S. luteus

Contains CLUMPING FACTOR

- S. lugdunensis confused w/S. aureus in slide method
- S. schleiferi

DO NOT DISTRIBUTE

SMALL COLONY VARIANTS STAPHYLOCOCCI

- Fastidious
- Requires: CO₂, Hemin, Menadione
- Grows on media containing **blood**.

- Gram (+) cocci
- In pairs or chains
- Aerotolerant anaerobes
- Some are **capnophilic**

Characteristics

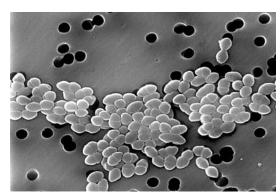
<u>COLONY</u>

Usually small and transparent

	CATEGORIES OF NE	CATEGORIES OF NECROTIZING FASCIITIS		
	Type Description			
	1	Polymicrobial infection (aerobic &		
DDODEDTV OF MEDT		anaerobic)		
PROPERTY OF MEDT		Consist of Group A Streptococci		
	3	Clostridial myonecrosis		
v/ S. aureus in slide method	Saltwater Necrotizing Fasciitis	Caused by Vibrio spp.		

Organism	Lancefield	Smith and Brown's
S. pyogenes	А	Beta
S. agalactiae	В	Beta
S. dysgalactiae, S. equi	С	Beta
S. bovis group	D	Alpha, Gamma
E. faecalis, E. faecium	D	Alpha, Beta, Gamma
S. pneumoniae	None (has)	Alpha
S. anginosus, mutans, mitis	A, C, F, G, N	Alpha, Beta, Gamma

STREPTOCOCCUS & ENTEROCOCCUS


Organism	Virulence Factor	Disease Assoc. / Characteristics
----------	------------------	-------------------------------------

	1	1	· · · · · · · · · · · · · · · · · · ·		
S. pyogenes		Antiphagocytic	 Necrotizing 		
	Protein F	Fibronectin-	fasciitis /		
		binding protein	galloping		
	Hyaluronic	Capsule,	gangrene		
	acid	prevents	 Erysipelas (St. 		
		opsonization	Anthony's Fire)		
	Streptolysin O	O2 labile,	 Impetigo 		
		antigenic,	 Puerperal Sepsis 		S. agalactiae
		subsurface	 Childbed Fever 		
		hemolysis	 Scarlet Fever 		
	Streptolysin S	O2 stable, non-	 Post- 		
		antigenic,	streptococcal		
		surface	acute		S.
		hemolysis	glomerulonephritis		pneumoniae
	Streptokinase	Thrombolytic	(Bright's Disease)	TECU	
		drug, fibrinolysis		ЛЕСП	KEVIE
	Hyaluronidase	Spreading			
	· ()	factor			
	• •				

DO NOT DISTRIBUTE

Streptococcus pyogenes

	Erythrogenic Toxins (Streptococcal Pyrogenic Exotoxins)	SPEs A, B, C, F A – Scarlet Fever & Toxic shock sydrome	
S. agalactiae	Sialic acid	Critical virulence determinant	Meningitis, obstetric complications, mastitis in cattles
s. pneumoniae REVIE\	Capsular polysaccharide NNOTES	Serotypes 1, 2, 3 – common cause of lobar pneumonia	Meningitis, otitis media, sinusitis, bacteremia, 2° atypical HUS
Enterococci	cytolysin	Capable of prod pseudoperoxida: (weak bubbling)	
Viridans Streptococci	endocarditGingivitisDental cari	es ()
S. bovis group (S. gallolyticus subsp. Gallolyticus)	 Associated (colorectal) 	with gastrointestir tumors)	al carcinoma

TESTS FOR STREPTOCOCCI

Bacitracin Disk Test / Taxo A	Differentiates S. pyogenes from other Beta-	
(0.04 U)	hemolytic groups	
	Result:	-
	Group C and G are susceptible	_
Sulfamethoxazole &	Result:	
		-
Trimethoprim (SXT) test	Group B – resistant to SXT	
	Group C – sensitive to SXT	
Pyrrolidonyl Arylamidase	More specific than bacitracin test	_
(PYR) test	S. pyogenes is the only Beta-hemolytic	
	strep that is positive.	
CAMP (Christie, Atkins,	Used to differentiate S. agalactiae from	
Munch-Petersen) test	other Beta-hemolytic streptococci.	
	Result: (+) Beta-hemolysis	TE
Hippurate Hydrolysis Test	Used to differentiate S. agalactiae from	
	other Beta-hemolytic streptococci.	
	Result: (+) purple color	L
Dick's Test	Skin test for <u>or pietpipiit</u>	
Schultz-Charlton Test	Immunity test for Scarlet fever KIDU	
	Capsular swelling test for S. pneumoniae &	
	other bacteria that has capsule.	
Francis Skin Test	Detection of presence of antibodies	
	against pneumococci.	
Bile solubility test	Evaluates the ability of S. pneumoniae to	•
	lyse in the presence of bile salt.] -

Organism	SXT (1.26 ug) Group A and B vs. others	CAMP for Group B	Hippurate Hydrolysis	CAMP	PYR
Group A	S	R	-	-	+
Group B	R	R	+ (Enhance hemolysis)	+	-
Group C, F, G	R	S	-	-	-

Organism	Bile Esculin hydrolysis	6.5% NaCl	Optochin	PYR
Enterococcus	+	+	R <14mm	+
Non-	+	-	R <14mm	-
Enterococcus		OTES		
S .			S >14mm	-
pneumoniae				

Organism	Bile Esculin	6.5% NaCl	PYR	LAP	MRS broth
Enterococcus	+	+	+	+	-
Pediococcus	+	+	-	+	-
Leuconostoc	+	+	-	-	+

NUTRITIONALLY VARIANT STREPTOCOCCI

- requires SULFHYDRYL COMPOUNDS

-causes hard-to-treat endocarditis (surgery is required for cure)

- Abiotrophia
- Granulicatella

BACILLUS

- Aerobic and facultatively anaerobic
- Gram (+)
- Catalase (+)
- Spore-forming bacilli

Organism	characteristics	Virulence factors	Disease association
B. anthracis	 non-motile 	Protective	Cutaneous
	• ""	Antigen –	anthrax – most
	appearance	facilitates	common
	 Produces 	transport of	Eschar
	endospores	two other	(malignant
		protein into	pustule) –
	Appearance in	PR the cell. R	black necrotic
	5% SBA:	 Edema factor 	lesion.
	•	(adenylate	Gastrointestinal
	Ground-	cyclase) -	Anthrax – most
	glass	responsible	
	appearance	for edema	Pulmonary
	 Beaten egg- 	 Lethal factor 	Anthrax
	whites	(protease) –	(Woolsorter's /
		primarily	Ragpicker's
	In MHA:	responsible	Disease)
	 String of 	for death.	 Injectional
	Pearls	 D-glutamic 	Anthrax –
		acid capsule	assoc. w/ "skin
		– resistant to	popping"
		hydrolysis	

B. cereus	 Penicillin- resistant Beta- hemolytic MOTILE Frosted glass- appearing colony Feathery, spreading, beta- hemolytic colonies 	 Diarrheal responsible for most symptoms. Hemolysin BL Nonhemolytic enterotoxin Cytotoxin K Emetic Cereulide – heat-stable, proteolysis, acid-resistant 	 Opportunistic Assoc. w/ food- borne disease Causes PROGRESSIVE ENDOPHTHALMITIS Some strains can carry B. anthracis toxin genes.
B. HKE	Prduces	Harbors genes of	
thuringensis	parasporal	B. cereus-	
	crystals	associated enterotoxins.	

DIFFERENTIATION					
Test B. anthracis B. cereus					
Capsule	-	+			
Growth @ 45°C	-	+			
Salicin Fermentation	-	+			
Hemolysis	_	+			
Motility	-	+			
Penicillin susceptibility	S	R			
Growth in Penicillin (10	-	+			
U/ml) agar					
"string of pearls"	+	-			
reaction					
Gelatin hydrolysis	-	+			
Growth in PEA agar	-	+			

BIOLOGICAL INDICATORS		
	Autoclave	
	Ionizing radiation	
	Ethylene oxide sterilization	

LISTERIA, CORYNEBACTERIUM

- Gram (+) bacilli
- Catalase (+)
- Non-spore forming
- Non-branching

Organism	Virulence Factors	Disease Assoc.	Characteristics
Corynebacterium	Diptheria Toxin	Respiratory	Pleomorphic
diphtheriae	- blocks protein	Diphtheria –	(club-
	synthesis	development of	shaped)
	- causes	pseudomembrane	S• Irregular
	demyelinating	(gray to white)	staining.
	peripheral neuritis		
		Cutaneous	
	Bacteria is	Diphtheria – non-	
	infected by	healing ulcers	
	lysogenic Beta-	(dirty gray)	
	phage.		
	TONSIL / PHARYNX		
	– most common		
	site of infection.		

C. minutissimum – causes erythrasma

C. pseudotuberculosis – causes granulomatous lymphadenitis

- also produces dermonecrotic toxin

Cardiac Failure – often cause of death of diphtheria **Antitoxin** – treatment for the toxin.

	Organism	Virulence Factor	Disease Assoc.	Characteristic
	Listeria	Hemolysin	Listeriosis	Small, round,
	monocytogenes	(Listeriolysin O)	- Newborn	smooth
		- damages the	(bacteremia	translucent forms
		phagosome	and meningitis)	narrow zone of
				Beta-hemolysis.
		Intermalin	- Pregnant	
stics		(Protein p60) —	Women	Optimal growth:
		-induces	(spontaneous	30 – 35°C but
rphic		phagocytosis;	abortion – 3 rd	growth occurs @
		increase	trimester)	0.5 – 45°C
		adhesion,		
UIE		penetration into	Has highest	Tumbling or end-
		mammalian cells	tropism in CNS.	over-end motility
				Umbrella-shaped
				or
				(semi-solid tube
				@ 22-25°C)

Test	Listeria	Corynebacterium	
CAMP	+	-	
Hippurate Hydrolysis	+	-	
Esculin Hydrolysis	+	-	

Motility	+	-
Salicin	+	-

Erysipelothrix rhusiopathiae

- Gram (+) bacilli
- Catalase (-)
- Non-branching
- H₂S (+) in TSI

	Erysipelothrix rhusiopathiae			
Disease Association	Colony Appearance on BAP	ID		
 Erysipeloid bacteremia cutaneous 	Large, rough, or small, smooth and translucent	in gelatin stab culture.		
infection	Shows alpha-hemolysis after prolonged incubation.	DISTRIBUT		

Gardnerella vaginalis

- gram variable / gram (-)
- beta-hemolytic (HBT agar) / nonhemolytic (BAP)
- causes bacterial vaginosis

Causes Bacterial Vaginosis

- Gardnerella vaginalis
- Prevotella spp.

- Peptostreptococcus spp.
- Porphyromonas spp.
- Mobiluncus spp.
- Mycoplasma hominis

– most accurate means of diagnosing bacterial vaginosis than culture.

NUGENT SCORING SYSTEM					
Lactob	acillus	Gardnerella &		Mobiluncus	
morphoty	pes (boxy,	Bacteroides		morphotypes (curved,	
gram (+) bacilli		(pleomorp	hic, gram-	gram-varic	ıble bacilli)
		variable, gram (-), short			
		bacilli)			
Quantity	Points	Quantity	Points	Quantity	Points
CH+R	0		I S O	0	0
3+]+	1	1+ to 2+	1
2+	2	2+	2	3+ to 4+	2
]+	3	3+	3		
0	4	4+	4		

NUGENT SCORING INTERPRETATION

0 – 3 – NORMAL VAGINAL MICROBIOTA

4 - 6 - INDETERMINATE FOR BACTERIAL VAGINOSIS

_____ – BACTERIAL VAGINOSIS

NOCARDIA, RHODOCOCCUS

- Gram (+)
- Branching
- Partially acid-fast

Organism Characteri	stics Disease Assoc.
---------------------	----------------------

Nocardia	Beaded	Cutaneous
	appearance	infection
	Strictly	Actinomycotic
	aerobic	mycetoma
	Presence of	
	DAP	
	 Produces 	
	Nocobactin	
	– iron-	
	chelating	
	compound	
	 Urease (+) 	

Salmon-pink	
•	
pigment	
 Cocci to rods – 	
24 hours	
• CAMP (+) w/ S.	
aureus	

Test	Nocardia	Actinomyces spp.
O2 requirement	Aerobic	Anaerobic
AFS	Acid-fast	Non acid-fast
Catalase	+	-
Urease	+	-
Sulfur Granules	+	+

Nocardia brasiliensis – most common cause of cutaneous infection and actinomycotic mycetoma.

Nocardia asteroides - causes pulmonary infection

Organism		Casein Hydrolysis	
Nocardia brasilisiensis	DU		
Nocardia asteroides		-	

ENTEROBACTERIACEAE

- Non-spore forming
- Facultatively anaerobes
- Glucose fermenters
- Oxidase (-) (exc. Plesiomonas)
- Catalase (+) (exc. Shigella dysenteriae)
- Commensal flora except Salmonella, Shigella, Yersinia (true pathogen)
- Nonencapsulated except (Klebsiella & Enterobacter)

Organism	Characteristics	Disease Assoc.
Rhodococcus equi	 Facultative 	Infections in
	intracellular	immunocompromised
	organism;	patients such as
	replicate within	patients with HIV.
	macrophage.	

Organism	Disease Association	Description
E. coli	Most common cause of	
	nosocomial infections	contamination in water.

	E. coli BIOTYPES	
Strain	Infection	Virulence Factors
Meningitis/sepsis-associated E. coli	Meningitis	K1 antigen – identical capsule to N. meningitis
Enteropathogenic E. coli (EPEC)	Infantile diarrhea (without blood) – large amounts of mucus	Adhesive properties (pili and intimin) – no exotoxins.
Enterohemorrhagic E. coli (EHEC) (Serotoxigenic/verotoxigenic)	Bloody diarrhea (NO WBCs) Assoc. w/	Cytotoxin - Verotoxins I & II – produces damage to vero cells.
	PROPER	Most common serotypes – 0157:H7
	Traveler's diarrhea / Montezuma's revenge	Cholera-like toxin Heat-labile enterotoxin (LT); Heat-stable (ST)
Enteroinvasive E. coli (EIEC)	Watery diarrhea Dysenrery-like / shigella-like infection	toxin Direct invasion HEp-2 cells – used to
	Watery Diarrhea (w/ WBCs)	detect invasiveness (stacked-brick pattern)
Enteroaggregative E. coli (EAEC)	Watery diarrhea	Global aggregative regular gene, AggR , responsible for cellular adherence.

Uropathogenic <i>E. coli</i> (UPEC)	MOST COMMON CAUSE OF UTI Considered cause of diarrhea in HIV patients.	Pili (primary virulence factor to cause UTI) Cytolysins – kill phagocytes.
		Aerobactin – chelates iron

Escherichia albertii – newest species to the genus

- Assoc. w/ diarrhea in children.

<u>YELLOW-PIGMENTED</u> • E. hermannii

TEC'H^{E.} KUlneris VIEW NOTES

Organism	Disease Assoc.	Description
Citroacter spp.	Septicemia, menigitis, brain abscesses	C. freundii – may harbors inducible genes (encode resistance to ampicillin and first-generation cephalosporin) - endocarditis in intravenous drug abusers
Cronobacter sakazakii	Bacteremia, causes neonatal meningitis from powdered infant formula, necrotizing colitis in neonates;	Produces yellow pigment that is enhanced by incubation @ 25°C

Edwardsiella tarda	Gastroenteritis	Assoc. w/ harboring fish or turtles				coordinated movement
Enterobacter spp.	Healthcare – associated infection (contaminated medical device)			Providencia spp.	Most commonly associated w/ UTI (P. retgerii) and the feces of children w/ diarrhea	P. stuartii – outbreaks in burn units
Hafnia alvei	Gastrointestinal infection	Motile; non-lactose fermenter		Serratia spp.	Colonization and cause of pathogenic infection in healthcare setting	– red pigment produced by Serratia.
		DELAYED CITRATE POSITIVE REACTION		Salmonella spp.	-Acute gastroenteritis or food poisoning	Diagnosed with
Klebsiella pneumoniae (Friedlander's Bacillus)	Lobar pneumoniae – 	K1 capsular-containing Mucoid colonies – tends to string			-Enteric fever (Typhoid Fever) assoc. w/ Typhi & Paratyphi	Fimbriae – initiates intestinal infection
Morganella spp.	Normal inhabitants of gastrointestinal tract; neonatal sepsis	Resembles E.coli in EC	TE	CH REVIEW	Isolated in: ES - blood (1 – 2 weeks)	-Ability to traverse intestinal mucosa
Pantoea agglomerans	Sporadic infections can occur due to trauma	Yellow-pigmented colony; TRIBLIT			- urine (3 – 4 weeks) - stool (2 – 3 weeks)	-enterotoxin
		Lysine, arginine, ornithine and arginine		Shigella spp.	 Bacterial dysentrery Blood Pus 	Non-motile; low infectious dose (100- 200)
Proteus spp.	Assoc. w/ UTI P. mirabilis - most common isolate	Swarming Odor: chocolate cake or burnt chocolate smell		Yersinia pestis	Mucus Plague Only species that is transmitted from	 non-motile Grows best @ 25°C – 30°C Colonies: pinpoint @
	- due to urease activity	Swimmers – standard vegetative cells			animals by bite of an insect vector (Xenopsylla cheopis)	24 hrs. but resemble those of other Enterobacteriaceae
		Swarmers – hyperflagellated; capable of				after 48 hrs. - cauliflower appearance @ 48 hrs in SBA

		 in broth culture
Yersinia enterocolitica	Acute enteritis (enterocolitis) – most common form	48 hrs. incubation @ RT in CIN – develops
	Arthritis & Erythema nodosum – mimics appendicitis	

Other Klebsiella spp.			
Organism	Disease Assoc. / Characteristics		
K. oxytoca	Assoc. w/ antibiotic-associated hemorrhagic colitis		
F	PRINCE (F) RTY OF MED		
<i>K. pneumoniae subsp.</i> Isolated from patient's with			
Rhinoscleromatis	rhinoscleroma		
K. pneumoniae subsp. Ozaenae	Causes atrophic rhinitis Assoc. w/ presence of plasmid-		
	mediated ESBLs		
K. granulomatis	Causes donovanosis		

FACTS ABOUT Salmonella spp.				
SPECIES				
Salmonella enterica				
Salmonella bongori				
Salmonella enterica SUBSPECIES				
I Enterica				
II Salamae				
IIIa Arizonae				
IIIb Diarizonae				
IV Houtenae				

VI	Indica			
Salmonella enterica SEROTYPES				
Typhi				
Choleraesuis				
Paratyphi				
OTHER FACTS				
Causes Typhoid fever Typhi				
Causes Enteric fever	Choleraesuis & Paratyphi			
Salmonellosis infective dose 10 ⁶ bacteria				
Development of typhoid fever 9-14 days				
Gallbladder	Site of CHRONIC CARRIAGE			
Vi antigen	Important in identifying Salmonella			
	Typhi			

DTECH REVIEW NOTES

FACTS ABOUT Shigella spp.				
SEROGROUP				
A Dysenteriae				
B Flexneri				
C Boydii				
D Sonnei				
Kiyoshi Shiga First man who isolated Shigella				

FORMS OF PLAGUE			
Bubonic/Glandular – most common; high fever w/ BUBOES			
Septicemic			
Pneumonic			
Y. pseudotuberculosis - 1° pathogen of rodents			
- causes caseous swelling			
	(pseudotubercles)		
	- typically looks like plague bacillus		

BIPOLAR STAININGWayson stain

- Methylene blue

PSEUDOMONAS, BURKHOLDERIA

Organism	Disease Assoc.	Virulence factor	Appearance on BAP	Odor	M o t i i t y
P. aeruginosa	 Primary Cause of pneumonia in Cystic Fibrosis patients. Swimmer's ears - contact lens infection - erythema gangrenos um 	 Exotoxin A-most importa nt Hemolysi ns Pili Alginate	Spreading and flat; serrated edges, silver metallic sheen, bluish green, red or brown pigmentation Beta-hemolytic MAC – colorless w/ green	Rubber-like Grape-like Corn-tortilla	ТE
B. mallei	Glander's disease		N/A	N/A	-

B. pseudomal lei	-Melioidosis 	Capable of survivial in human macrophage	Smooth; mucoid to dry and wrinkled	Earthy odor	+
B. cepacia	Infections in patients w/ CF	Can survive hospitals due to intrinsic resistance to antibiotics	Smooth and raised MAC – pink colonies (lactose oxidizer)	Dirtlike/earth y odor	+

_	Organism	Growth @ 42°C	Lysine Decarboxylase	Glucose oxidation
	B. mallei	EW NOT	C -	+
	B. pseudomallei	+	-	+
	B. cepacia	Variable	+	+
	P. aeruginosa	+	-	+

FLUORESCENT PSEUDOMONADS GROUP					
Organism Growth @ 37°C Growth @ 42°C Pyocyanin					
P. fluorescens	+	+	+		
P. putida	+	-	-		
P. aeruginosa	+	-	_		

VIBRIO, AEROMONAS, CHROMOBACTERIUM

<u>Vibrio</u>

- Motile (monotrichous) –___
- Oxidase (+), except for V. metschnikovii
- Halophilic except V. cholerae and V. mimicus
- LOA = ++-
- 0129 Susceptible vs. Aeromonas (R)

<u>Vibrio cholerae</u>

- Agent of _____
- Hallmark: _____ (caused by cholera toxin)
- Somatic antigens O1 & O139
 - Assoc. w/ V. cholerae envelope RTY OF MED1
 Positive markers for spread of pandemic and epidemic cholera
 - Cholera toxin / Choleragen increase cAMP → dehydration, loss of water, Na and K.
 NOT DISTRIBUTE

CLASSIFICATION OF VIBRIO CHOLERAE O1 (PANDEMIC TYPE)				
Biotype	Classical	El Tor (Common Type)		
Polymyxin Susceptibility	S	R		
Lysis BY bacteriophage	+	-		
Chicken RBC	-	+		
Agglutination				
Hemolysis of Sheep	-	+		
RBC				
Vogues-Proskauer Test	-	+		

Serotype	Ogawa	Inaba	Hikojima
Anti – Ogawa	+	-	+
Anti – Inaba	-	+	+

Organism	Vibrio	Aeromonas	Plesiomonas
TSI	A/A (V. cholerae)	A/A gas+	K/A or A/A (glu +
	K/A (V.		inositol)
	parahaemolyticus)		
NaCl	+ (vs. Aero and	-	-
	Plesio)		
Oxidase	+	+	+
O129 Sensitivity	S (vs. Aero and	R	S/R
/ Vibrio Static	Plesio)		
Test			
Motility	+	+	+
LOA	++-	+-+	+++
DNAse	-	+	-
		ic +	-
hydrolysis		3	

	Disease	8% NaCl	TCBS	Other
V. cholerae	Cholera (rice	-	Yellow	String test +
	watery)			(0.5% Na
				desoxycholate)
V. alginolyticus	Wound and	+	Yellow	Strict halophilic
	ear infection			(1% NaCl; can
	LEAST			tolerate up to
	PATHOGENIC			10%)
	Most			
	frequently			
	isolated			
V.	Gastroenteritis	+	Green	Arabinose +
parahaemolyticus	2 nd most			Kanagawa +
(O3:K6)	common			Beta-hemolytic
	cause of			in Wagatsuma
	gastroenteritis			agar)

V. vulnificus	Primary	+	Green	Lactose +
	septicemia,			
	wound			
	infection			
	Seen in blood			
	cultures			
	2 nd most			
	serious type			
	of infection			

Aeromonas spp. – Beta – hemolytic

- grows on Modified Cefsulodin-Irgasan-Novobiocin (CIN)

C. violaceum

- Violacein ethanol soluble, (Room Temp.)

	EIKENELLA DO NOT	DISTRIBUT
	Eikenella corrodens	Methylobacterium spp.
Normal flora of human	+	-
Spectrum of Disease and Infections		Bacteremia and peritonitis in patients undergoing chronic ambulatory peritoneal dialysis
Gram Staining	Slender, medium length gram (-) straight rod with rounded ends.	Short medium-length gram (-) bacillus vacuolated, pale staining, may resist decolorization
Colonial appearance and characteristic	Hallmark characteristic:	 Pink to coral pigment

Medium: BA	Improved detection: Selective media + clindamycin	 Optimal growth occurs: 15°C – 30°C Temperature- sensitive Chlorine-resistant
	TESTS	
Catalase	_	+
Xylose-oxidizing	-	+
Indole	_	-

PASTEURELLA

• Gram (-)

CHOxidase (+) EW NOTES

- Ferments glucose
- Most are susceptible to penicillin
- Catalase (+) exc. P. bettyae and P.caballi
- Reduce nitrate to nitrite

	Disease Assoc.	Gram Stain	BAP
P. multocida	 Focal soft tissue infection Respiratory disease Systemic disease 	Coccobacilli; frequent bipolar staining	Convex, smooth, gray, nonhemolytic , some are rough and mucoid; some have
	– risk factor for systemic disease		
Р.	Rare systemic	Short, straight	Convex, smooth
pneumotropica	infection	bacilli	nonhemolytic

P. bettyae Genital tract- associated disease; neonatal infection	Thinner, short, straight bacilli	Convex, smooth, nonhemolytic
--	-------------------------------------	---------------------------------

Aggregaatibacter actinomycetemcomitans – STAR-SHAPE W/ FOUR TO SIX POINTS COLONIES.

Capnocytophaga – _____

HAEMOPHILUS

- Gram (-) coccobacilli
- Pleomorphic
- Requires X and V factor
- Facultative anaerobes

	Х	V	Porphyrin	Others
H. haemolyticus	+	+D	O NO	Beta-hemolysis in Horse BAP
H. aegypticus (Koch-Weeks Bacillus)	+	+	-	Pink-eye conjunctivitis; Brazilian Purpuric fever
H. influenzae (Pfeiffer's bacillus)	+	+	-	Virulence factor: Type B capsule, IgA protease, pili, LPS – has paralyzing effect on ciliated respiratory epithelium. Major cause of epiglottitis Otitis media, pneumonia, cellulitis.
H. parainfluenzae	-	+	+	Primary site of infection – mitral valve

H. parahaemolyticus	-	+	+	Beta-hemolysis on Horse BAP
H. paraphrophilus	-	+	+	
H. ducreyi	+	-	-	school of fish, grows well @ 33°C
H. aphrophilus	-	-	+	

SPECIMEN COLLECTION

PROPERTY OF MEDTECH Negative to E

• Haemophilus spp. are susceptible to DRYING and TEMP. EXTREMES.

BARTONELLA

- Lower RT spx: bronchoalveolar lavage
- Pneumonia and CSF infection STERILE FLUID AND BLOOD
- H. ducreyi genital ulcers

Catalase

- o Urease
- Nitrate reductase
- Oxidase
- Facultatively intracellular bacterium
- Multiply and persist in the RBCs
- Angioproliferation, can inhibit endothelial cell apoptosis

Organism	Disease Assoc.
B. alsatica	Human accidental host
B. bacilliformis	Carrion's disease
B. Quintana (form. Rochalimea	
Quintana)	Bacillary angiomatosis
B. henselae	1° cause of cat-scratch disease
	Peliosis hepatitis
B. clarridgeiae	
B. elizabethae	Endocarditis

CAMPYLOBACTER, HELICOBACTER

- Gram (-) bacilli
- Microaerophilic (5-10% O₂)

	Campylobacter	Helicobacter	
Disease Assoc.	Most common cause of	H. pyloriCan cause	
	 Febrile systemic disease Periodontal disease Gastroenteritis 	peptic ulcer disease & gastric carcinoma, gastritis • Major cause of Type B gastritis	
	Postinfection complication: PE • Reactive arthritis • Guillain-Barre Syndrome	RTY OF MED)TE
Laboratory Diagnosis	Blood, feces, rectal swabs are acceptable	Tissue biopsies BU Placed in stuart's Refrigerated for 24 hrs.	E
Direct Detection	, S-shaped ; DARTING MOTILITY (Hanging drop)	Warthin-Starry or Silver stain and giemsa stain on biopsy specimen.	
Media and Cultivation	 Skirrows Medium V Butzler Medium Campy-CVA Charcoal Cefoperazone Deoxycholate Agar (CCDA) 	 Brucella agar w/ 5% SB Selective Media Skirrow's Media Modified Thayer Martin Agar 	

	C. jejuni subsp. jejuni	C. coli	C. fetus	H. pylori
Hippurate hydrolysis	+	-	-	-
Growth in 25°C	-	-	-/+	-
Growth @ 42°C	+	+	-	+
Catalase	+	+	+	+
Urease	-	-	-	+
Nitrate to nitrite	+	+	+	+/-
H ₂ S in TSI	-	-	-	-
Nalidixic	S	S	R	R
		OTEC		
Cephalotin	R R R	R	S	S

LEGIONELLA

- Gram (-) fastidious bacilli
- Mesophilic (20-45°C)
- Obligate aerobe, motile

Legionella pneumophila				
Disease Association	 Legionnaires Disease 			
	Pontiac Fever			
	 Wound abscesses, 			
	encephalitis, or endocarditis			
Direct Directions	0.1% Fuchsin substituted for safranin			
	in the gram stain			
	 Tissue sections use silver or 			
	giemsa stains			
Media and CultivationTwo agar plates (atleast one BCYE)				

BRUCELLA

Brucella

- Poorly stained by conventional gram stain
- Resembles fine grain of sand
- Requires erythritol
- Urease (+), catalase (+)

BORDETELLA

- PERTUSSIS/ WHOOPING COUGH
 - \circ $\,$ Usually disease of children $\,$
 - Has 3 symptomatic stages
 - Catarrhal mild cold; runny nose
 - **Paroxysmal** vomiting and with "whooping"
 - Convalescent

		BIOC						SCEIII
Disease ass	ociation		Brucellosis-zo infection	oonosis, syste	emic		Lab	Diagnosis
Lab Diagno	sis		(preferred),	ne), Bone mc CSF, pleural, esses, other tis	synovial,		Culture	 Most sensitive early in the illness Traditional diagnostic standard for pertussis
Media and	cultivation	PF	• Bruce base 5% he	ella agar or in -spx other the eated horse on enhances s	nfusion an blood or rabbit	TE	CH REVIEW NO	May become undetectable by culture 2 weeks after start of paroxysms
		D	Atmc Incut	edia & CO2 in a hu osphere (BHI,1 oated 3 week dered negat	ISB) BUT (s before	Е		Nasopharyngeal aspirates or nasopharyngeal swab; Calcium alginate or Dacron COTTON SWABS – INHIBITORY THROAT, SPUTUM – UNACCEPTABLE
Species	CO ₂ required	Time to positive in	H ₂ S produced	INHIBITIC Thionine	N BY DYE Fuchsin			ANTERIOR NOSE – SITES ARE NOT LINED WITH CILIATED EPITHELIUM
	for growth	urease	-			_	Cultivation	Regan – Lowe – with charcoal
B. abortus	±	2 hrs (rare 24hrs)	+	+	-			supplemented w/ horse bloodBordet-Gengou – potato fusion base
B. melitensis	-	2 hrs (rare 24hrs)	+	-	-		Colony Appearance	Cephalexin small and shiny; resembles
B. suis B. canis		15 mins. 15 mins.	<u>+</u> -	-	+ +			whitish gray w/ age.

Characteristics	B. pertussis	B. parapertussis	B. bronchiseptica
Catalase	+	+	+
Oxidase	+	-	+
Motility	-	-	+
Nitrate	-	-	+
Urease	-	+ (24 hrs.)	+ (4 hrs.)
Growth Regan-	3-6 days	2-3 days	1-2 days
Lowe agar			
Blood agar	-	+	+
McConkey Agar	+	+\-	+

VIRULENCE FACTORS OF Bordetella pertussis

- Pertussis toxin exotoxin; interferes signal transduction
- Adenylate Cyclase toxin inhibits immune effector cells; induces
- supraphysiologic conc. of cAMP
 Tracheal toxin causes ciliostasis; inhibits DNA synthesis; promotes cell death
- Filamentous hemagglutinin

DISTRIBUTE FRANCISELLA

- Gram (-) coccobacilli •
- Strict aerobes
- Urease (+), motility (-), oxidase (-)
- MAJOR VIRULENCE FACTOR CAPSULE

	Francisella spp.	
Disease association	Tularemia – one of the most	
	common lab acquired infection	
	-Rabbit fever	
	-Deer fly fever	
	-Market men's disease	
Lab diagnosis	BSL Level 2 Pathogen	

	Specimen: - scrapings from infected ulcers - lymph node biopsies - sputum
	Whole blood - acceptable
	specimen for all types of tularemia
Direct Directions	Gram stain – little use with primary
	specimen.
	Basic fuchsin- used as counterstain
	for better staining.
Media and Cultivation	Media with sulfhydryl compounds
	(cysteine,, thiosulfate, or IsoVitaleX) – for primary isolation

TECH STREPTOBACILLUS AND SPIRILLUM

	Streptobacillus moniliformis	Spirillum minus
General characteristics	 Requires blood, serum or ascite fluid in the medium and incubation under CO₂ Facultative, nonmotile anaerobe Highly pleomorphic 	Gram (-), helical , strictly aerobic
Disease Association	Haverhill fever	Ratbite fever (SODOKU)
Lab diagnosis	Blood	Blood, exudate, or lymph node tissues
Direct Detections	Pus or exudates – stained with gram or giemsa stain	Characteristic spirochetes – using Giemsa or Wright stain / dark-field microscopy

Media and cultivation	Broth cultures –	nonculturable
	··	,

NEISSERIA & MORAXELLA

- Gram (-) cocci
- Positive for
 - Catalase
 - \circ Oxidase
 - Superoxol (Neisseria)
 - o Glucose fermenters exc. For Moraxella (asaccharolytic)

N. gonorrhoeae

sexually

disease

• Opthlamia

always

transmitted

normal flora

neonatorum

• Leading cause of

pathogenic; not a

N. meningitidis

Leading cause of

Meningococcemia

Purulent arthritis

bacterial

&

•

•

•

•

fatal

meningitis

syndrome

epidemic

meningitis

Pneumonia

• Endemic

Waterhousefriderichsen

• Gonorrhea

Disease Association

- Flow of seeds
- o "Clap" "clapoir" (French) brothel

 JEMBEC plates
ENDOCERVIX – most common site of infection
women
URETHRA – for men

in

• Dacron/Rayon – recommended

Media

Media			
Thayer-Martin Agar	V+C+N		
Modified thayer-martin agarV+C+N+ Trimethoprim lactate			
Martin-Lewis AgarV + C + Anisomycin + T			
New York City Agar V + C + Amphotericin B + T			
GC – LECT	Lincomycin + V + C + Amphotericin		
	B + T		

GHRE	Glucos e	Maltos e	Lactos e	Sucros e	DNAse, Nitrate, Butyrat e Disk	Others
N. meningitidis	+	+	-	-	-	
N. gonorrhoea e	+	-	-	-	-	
N. sicca	+	+	-	+	-	Wrinkled colony / breadcrur b
N. Iactamica	+	+	+	-	-	ONPG +
M. catarrhalis	-	-	-	-	+	

	Beta- galactosidase	Gamma- glutamyl aminopeptidase	Prolyl- hydroxylprolyl aminopeptidase
N. meningitidis	-	+	-
N. gonorrhoeae	-	-	+
M. catarrhalis	-	-	-

Neisseria gonorrhoeae VIRULENCE FACTORS

- LOS endotoxin; major in-vivo virulence factor; protective device
- Pili (fimbriae) inhibits phagocytosis •
- **IgA protease** cleaves IgA •
- Cell Membrane Proteins protective device for organism
 - Protein I (por) channels nutrients to pass into waste products to exit cells.
 - Protein II (opa) adherence to phagocyte and epithelial cells IVIE
 - Protein III (rmp) blocks host IgG against organism

Specimen collection

- N. gonorrhoeae
 - Urethra insert 2 cm swab in anterior DISTRIBUTE
 - **Rectal culture** 4-5 cm in and canal
- N. meningitidis
 - CSF
 - 1ml 1000 x g for 10 mins
 - Cytocentrifuge (recommended)

ANAEROBIC ORGANISM

Gram positive SPORE-FORMING BACILLI

- Clostridium perfringens
- Clostridium botulinum \cap
- Clostridium tetani 0
- Clostridium difficile
- Clostridium septicum
- Gram positive Bacilli
 - Actinomyces spp.
 - Propionibacterium spp.
 - Bifidobacterium spp.
- Gram negative bacilli
 - Bacteroides fragilis 0
 - Porphyromonas spp.
 - Prevotella spp.

• Veillonella spp.

• Fusobacterium spp. Gram negative cocci

	Virulence Factor	Disease Association	Others
Clostridiu m perfringe ns	 Alpha & Beta toxins Type A (mild) Type C -food poisoning (enteritis necrotans) Enterotoxin 	 myonecrosis / eating sore Pig-bel-necrotic enteritis 	 Encapsulate d, nonmotile DOUBLE ZONE HEMOLYSIS reverse CAMP + stormy milk formation
C. botulinum	Botulinum toxin	flaccid paralysiswound botulism	Toxin used to treat strabismus

FS

	 most potent toxin neurotoxi n 	 infant botulism (floppy baby syndrome) SIDS Crib death 	 Tennis racket spores Terminal spore
C. tetani	Tetanospasmin• Neurotox in that causes spastic paralysis with	 Tetanus Tetanus neonatorum 	Drumstick, lollipop Narrow zone of hemolysis
	continuo us muscle spasm	PROPERT	vs. C. ramosum – terminal spore but glucose fermenter
C. difficile	Toxin A • Toxic to cells of intestinal mucosa Toxin B (cytotoxin) • Necrosis of colonic mucosa	 Antibiotic- diassociated DI diarrhea Pseudomembran ous colitis Associated with CLINDAMYCIN 	 Horse- barnyard odor Yellow "ground- glass" in CCFA
C. septicum		Associated with colorectal cancer	 Subtermin al spore Beta- hemolytic

	•	Medusa
		head in
		Anaerobic
		BAP

	Swarming	Motility	Glucose	Lactose	Lecithinase	Lipase	Spore Formation
C. perfringens	-	-	+	+	+	-	ST
C. botulinum	-	+	+	-	-	+	ST
C. tetani	+	+	-	-	-	-	Т
C. difficile	-	+	+	-	-	-	ST
C. septicum	+	+	+	-	-	-	ST

TECH REVIEVMYCOBACTERIA

- Slender, rod-shaped (0.2-0.6 um x 1-10um in size)
- Nonmotile; non-spore formers
- Strictly aerobic
- Increased CO2 enhances growth

RAPID GROWERS

- Grows in simple media
- Grows 2-3 days
- 20-40°C

DISEASE-ASSOCIATED MYCOBACTERIA

- Requires 2-6 weeks
- Requires complex media
- Has specific optimal temp.

MTB COMPLEX

- M. microti TB in immunocompetent and compromised
- _____ TB in tropical africa
- M. tuberculosis

- _____ TB in cattle and other ruminants
- M. canettii
 - _ size of droplet that can transmit MTB

Decreased antigen; Increased Hypersensitivity rxn. – granuloma formation **Increased antigen and hypersensitivity rxn** – tissue necrosis

MOST COMMON SITES OF SPREAD OF MTB (in-order)

- Spleen
- Liver
- Lungs
- Bone marrow
- Kidney
- Adrenal glands
- Eyes

MOST COMMON EXTRAPULMONARY SITES IN HIV PATIENTS

- Lymph nodes
- Genitourinary tract
- Abdominal cavity

Miliary TB

- Most cases is in _
- Common form of TB in HIV-infected people

_– skeletal TB of the spine

_____ of the deformed spine in Pott's Disease

- MDR-TB resistant to atleast Isoniazid & rifampin (1° treatment)
- XDR-TB resistant to 1° treatment, fluoroquinolone, atleast 1 of 3 injectable 2nd-line anti-TB drugs

DO NOT DISTRIBUTE

Mycobacterial Test

- _____ primary diagnostic method
- Chest X-ray used to complement bacteriologic testing
- **TB culture & DST (Ogawa & LJ)** routine diagnostic test for DR TB
- Tuberculin Skin test / Mantoux Test / PPD Test basic screening tool for TB infection
- Xpert MTB / RIF & Line Probe Assay -rapid test that detects MTB and rifampicin resistance

	DSSM Results & Interpretation			
	IUATLD / WHO Scale	Conventional Light Microscope		
	0	No AFB seen in 300 OIO fields		
	+n	1 – 9 AFB / 100 OIF		
	1+	10 – 99 AFB / 100 OIF		
PROPERTY OF MEDTE	CH REV2EW NOT	1 – 10 AFB/ OIF in 50 fields		
	3+	>10 AFB / OIF in atleast 20 fields		

Xpert MTB / RIF Results & Interpretation				
T MTB detected; rifampicin resistent not detected not detected				
RR	MTB detected; rifampicin resistance detected			
ТІ	MTB detected; rifampicin resistance intermediate			
Ν	MTB not detected			
	Invalid/ no result/ error			

PARASITOLOGY

NEMATODES

Characteristics

- Cylindrical, elongated, & bilaterally symmetrical
- Anterior end equipped with hook, teeth, plates and papillae
- Alimentary tract is simple, extending from mouth to anus. NO CIRCULATORY SYSTEM

	UNHOLY THREE
Hookworm	
Ascaris lumbricoides	
Trichuris trichiura	
	HEART-LUNG MIGRATION
Ascaris lumbricoides	
Strongyloides stercoralis	
Hookworm	PROPERTY OF MED
	SMALL INTESTINE
C apillaria philippinensis	
Hookworm	
Ascaris lumbricoides	DU NUT DISTRIBUT
T richuris trichiura	
Strongyloides stercoralis	
	LARGE INTESTINE
Enterobius vermicularis	
Trichuris trichiura	

- Anterior end has **3 lips** and **triangular buccal cavity** with sensory papillae
 - INFECTIVE STAGE EMBRYONATED EGGS
 - MODE OF TRANSMISSION INGESTION
 - DIAGNOSIS (+) EGG IN THE FECES

PATHOLOGY & MANIFESTATION

- "worm ball" / bolus formation in heavy infection
- Ascaris pneumonitis
- Eosinophilia
- Abdominal pain
- Loeffler's syndrome

VECTORS

Periplaneta Americana Blatella germanica

TREATMENT

- Benzimidazole
- Pyrantel pamoate

Trichuris trichiura

- Whipworm; holomyrian
- Anterior resembles "_____
- Adult worm inhabits the cecum and colon
 - INFECTIVE STAGE EMBRYONATED EGG (lemon/football shaped)
 - MODE OF TRANSMISSION INGESTION

Ascaris lumbricoides

Largest intestinal worm

PATHOLOGY & CLINICAL MANIFESTATION

• Petechial hemorrhage – may predispose amebic dysentery ulcers and invasion of *E. histolytica*

- Cause anemia
- Rectal prolapse
- Adult worm produces pore-forming protein caplled TT47

TREATMENT

- Mebendazole
- Albendazole

HOOKWORMS: Necator americanus & Ancylostoma

duodenale

- INFECTIVE STAGE FILARIFORM LARVAE
- MODE OF TRANSMISSION -
 - Egg resembles _

PATHOLOGY AND CLINICAL PRESENTATION ΗK

- Mazza mora, ground itch, dew itch, water sore
- Wakana Disease •
- Iron Deficiency Anemia
- Hypoalbuminemia

DO NOT DISTRIBUTE

	A. Duodenale	N. americanus
Position of the head	Anterior head	Anterior and strongly
	continuous in the same	reflexed dorsally
	curve as the body	
Buccal cavity	2 pairs of teeth	1 pair semilunar cutting
		plates
Copulatory bursa	Large tripartite	Small, tripartite
Copulatory spicules	2 hair-like spicules	Spicules fuse at tip into a
		barb
Vulva	Posterior half of the	Anterior half of the body
	body	
Cervical Curvature	C-shaped	S-shaped

Remarks	"	11	"		"
	•	Percutaneous & fecal oral route with transmammary transmission		Purely percutaneous Predominant in Philippines	

Animal Hookworms

- A. braziliense & A. caninum causes "creeping eruption" or cutaneous larva migrans (CLM)
- A. ceylanicum first case was recorded in llocus Norte in 1968

Diagnosis

• ELISA

TREATMENT

- Albendazole
- Iron supplement & adequate diet

Strongyloides stercoralis

- Threadworm
- Free-living
- Capable of parthenogenesis
 - INFECTIVE STAGE FILARIFORM LARVAE
 - MODE OF TRANSMISSION SKIN / MUCOSAL PENETRATION

PATHOLOGY & CLINICAL MANIFESTATION

- Cochin-china diarrhea / Vietnamese diarrhea
- Autoinfection \rightarrow hyperinfection

DIAGNOSIS

- Baermann funnel gauze method
- Harada-Mori Culture
- Beale's String test
- Duodenal aspiration

TREATMENT

Ivermectin

Enterobius vermicularis

- Pinworm; seatworm; society/social worm
- Adult worm: anterior end with lateral wings or **cephalic alae**
- Egg: flattened on one side: **D-shaped**; **Italian bread egg**; embryonated after 6 hrs. DDADEDT
 - INFECTIVE STAGE EMBRYONATED EGG
 - MODE OF TRANSMISSION INGESTION/INHALATION

PATHOLOGY & CLINICAL MANIFESTATION NOT DISTRIBUTE

- Oxyuriasis •
- Insomnia
- Extraintestinal enterobiasis
- External autoinfection

DIAGNOSIS

Graham's scotch adhesive tape swab (perianal cellulose tape swab)

TREATMENT

- Mebendazole
- Albendazole
- Pyrantel Pamoate

Capillaria philippinensis

- Pudoc worm
- Mystery worm

Capable of and

CHARACTERISTICS

- NATURAL HOST –
- PEANUT SHAPED w/ striated shells and flattened bipolar plugs
 - INFECTIVE STAGE INFECTIVE LARVAE
 - MODE OF TRANSMISSION INGESTION OF INFECTED FISH WITH LARVAE
 - INTERMEDIATE HOST FRESHWATER FISH / BRACKISH WATER FISH: BAGSIT

PATHOLOGY & CLINICAL MANIFESTATION

- Malabsorption syndrome
- Borborygmus and abdominal pain

DIAGNOSIS

- Direct smear/ wet mount / stool concentration technique
 - ELISA (coproantigens)
 - Duodenal Aspiration

Blood & Tissue Nematodes

SUBCUTANEOUS

- Loa loa
- Mansonella streptocerca
- Onchocerca volvulus

SEROUS CAVITY

• Mansonella spp.

LYMPHATIC

- Wuchereria bancroffi
- Brugia malayi
- Brugia timori

	W. bancrofti	B. malayi
Mean length (um)	290	222

Cephalic space: breadth	1:1	2:1
Sheath in giemsa	Unstained	Pink
Nuclei	Regularly spaced; separate	Irregularly spaced; overlapping
Tail	Single row of nuclei; does not reach tail end	Single row of nuclei reaches the tail
Terminal nuclei	NONE	2 nuclei; bulge at cuticle
Appearance in blood film	Smoothly curved	Kinky

Filarial worm	Periodicity	Diagnostic test	Interediate host	Specimen	Microfilariae		
W. bancrofti	Nocturnal (8 pm – 4 am)	Microfilariae	Culex, Aedes, Anopheles	R Blood C	Sheathed; absent nuclei at tail		
B. malayi	Nocturnal	Microfilariae	Anopheles, Mansonia	Blood	Sheathed, 2 separate nuclei at tail		
Loa loa		Microfilarie	Chrysops fly, tabanid or mango fly	Blood	Sheathed, nuclei continuous up to the tip of the tail.		
O. volvulus	None	Adult worm in excised tissue	Simulium (black fly)		NO SHEATH		

Parastrongylus cantonensis

Rat lungworm

______ – spiral arrangement of uterine tubules

- DEFINITIVE HOST **RATS**
- INTERMEDIATE HOSTS IN MOLLUSC 1st LARVA STAGE
 - INTERMEDIATE HOST SLUGS & SNAILS
 - MODE OF TRANSMISSION Ingestion or penetration
- INTERMEDIATE HOST IN HUMANS 3RD STAGE LARVA
- MODE OF TRANSMISSION (HUMANS)
 - Ingestion of raw mollusk
 - Ingestion of contaminated food
 - Ingestion of paratenic host
 - Drinking contaminated water

<u>DIAGNOSIS</u>

- DOT-BLOT ELISA
- Immuno-PCR detection

TREATMENT - Surgical removal NOTES

• Prednisone

Trichinella spiralis

- INFECTIVE STAGE: ENCYSTED LARVA IN STRIATED MUSCLE
- MODE OF TRANSMISSION: INGESTION OF UNDERCOOKED OR RAW MEAT

PATHOLOGY & CLINICAL MANIFESTATION

- Stages
 - ENTERIC invasion of intestine and incubation
 - INVASION larval migration and intestinal invasion
 - **CONVALESCENT** encystment and encapsulation

DIAGNOSIS

- Muscle Biopsy
- ELISA
- Latex Agglutination
- Bachmann Intradermal Test

TREATMENT

• Mebendazole

Albendazole

PREVENTION AND CONTROL

- Cook meat at minimum of 77°C
- FREEZING
 - \circ $\,$ -15°C for 20 days
 - $\circ~$ 30°C for 6 days

<u>Anisakis</u>

- Parasite of marine animals
 - INFECTIVE STAGE 3RD STAGE LARVA
 - MODE OF TRANSMISSION INGESTION OF UNDERCOOKED OR

RAW SQUID OR FISH

OT DISTRIBUTE

DIAGNOSIS

- Gastroscopic / endoscopic exam
- ELISA
- RAST

TREATMENT

• Mechanically remove larva using endoscopic forceps

CONTROL & PREVENTION

• Freezing

Dracunculus medinensis

- Longest nematode of man
- "guinea worm", "_
 - INFECTIVE STAGE INFECTIVE LARVAE
 - MODE OF TRANSMISSION INGESTION OF CONTAMINATED CRUSTACEANS
 - INTERMEDIATE HOST AQUATIC CRUSTACEANS (COPEPODS / CYCLOPS)

<u>Toxocara canis & Toxocara cati</u>

,,

- Clinical forms of Toxocariasis
 - Visceral Larva Migrans (VLM) -
 - Ocular Larva Migrans

• Covert Toxocariasis

DIAGNOSIS

- Tissue biopsy
- IgG ELISA
- Western blot
- PCR

TREATMENT

- Albendazole
- Mebendazole w/ anti-inflammatory drugs

CESTODES

• Tapeworm; flat and ribbon-like

• Hermaphrodite; lack digestive organs PROPERTY OF MEDTECH REVIEW NOTES

Body

- Scolex (head)
- Neck (region of growth)
- Proglottids (strobila)

<u>Taenia spp.</u>

	Taenia solium Taenia sagine					
Common name	Pork Tapeworm	Beef tapeworm				
Intermediate host	Pig; man	Cattle				
Scolex	w/ rostellum armed	No rostellar hooks				
	with 2 rows of large &	4 prominent acetabula				
	small hooklets					
Length		<25 meters				
No. of proglottids	8000-10,000	1000-4000				
Gravid proglottids	Finger-like (dendritic)	Tree-like (dichotomous)				
	7-13 lateral branches					
	(less active)	Genitals: irregularly				
		alternate				

	w/ accessory ovarian lobe; w/o vaginal sphincter		
Infective stage	Infected meat: "measly pork"		
Eggs	Indistinguishable: spherical, striated inside with oncosphere and 6 hooklets		

CLINICAL MANIFESTATION (T. solium)

- Intestinal infection
- Cysticercosis
- Neurocysticercosis
 - o Parenchymal
 - Extraparenchymal

DIAGNOSIS

- CAT
- CSF-ELISA
- Electroimmuno transfer blot Western blot • DOT ELISA

TREATMENT

- Praziguantel
- Niclosamide

<u>Taenia asiatica</u>

- Misidentified as T. saginata .
- INFECTIVE STAGE CYSTICERCUS VISCEROTROPICA

Hyemenolepis

	H. nana	H. diminuta		
Common Name	"dwarf tapeworm"	"rat tapeworm"		

accessory ovarian	Length	25-45 mm	60 cm
pe; w/o vaginal	Scolex	4 cup-shaped suckers	Rudimentary unarmed
sphincter		with rostellum & Y-	rostellum
		shaped hooklets	
ted meat: "measly	Egg	Spherical/subspherical	w/ bipolar thickening;
pork"		with thin outer layer	absent bipolar
stinguishable: spherical, striated inside with		and thick inner layer	filaments
oncosphere and 6 hooklets			
		w/ bipolar thinking & 4	Hooklets: fan-like
<u>um)</u>		hairlike polar filament	arrangement
	Infective stage	Direct: eggs	Cysticercoid larvae
		Indirect: Cysticercoid	
		larvae	
	Remarks	ONLY human	Requires intermediate
DDODEDTV OF MEDTE		tapeworm which can	host
PROPERTY OF MEDTE		complete its entire	
		cycle in 1 host	

Diphyllobothrium latum

- Fish tapeworm; broad tapeworm
- INFECTIVE STAGE –
- Scolex 2 bothria
- Proglottids 4000
- Egg with inspicuous operculum

CLINICAL MANIFESTATION & PATHOGENESIS

- •
- w/ thrombocytopenia and leukopenia DIAGNOSIS
 - Finding eggs and proglottids in stool

TREATMENT

• Praziquantel

Echinococcus spp.

- Scolex pyriform w/ 4 acetabula; armed
- Proglottids: 3 (immature, short neck, & 1 gravid proglottid)
- INFECTIVE STAGE egg
- LARVAL STAGE w/ protolices inside

CLINICAL MANIFESTATION AND PATHOGENESIS

• Human cystic echinococcus

DIAGNOSIS

- Radiographic findings / ultrasonography
- Positive serologic tests
 - Indirect hemagglutination
 - Indirect fluorescent antibody (IFA)
 - Enzyme immunoassay
- GOLD STANDARD IgE detection hydatid cyst fluid derived native or recombinant antigen B through ELISA or immunoblot

TREATMENT

- Surgical resection
- Albendazole; mebendazolePercutaneous aspiration, injection, re-aspiration

Diphylidium caninum

- Dog tapeworm; double-pored dog tapeworm
- Mature and gravid proglottid "pumpkin seed" shaped
- Infective stage cysticercoid larvae

TREMATODES

- Known as flukes
- Requires 2 intermediate hosts exc. Schistosomes

0	1 st —	snail
0		JIIGH

o 2nd:

FISH	H. heterophyes,
	C. sinensis
	O. felineus
	P. westermani
PLANT	F. hepatica
	F. gigantica
	F. buski
SNAIL	E. ilocanum

BLOOD FLUKES

• S. japonicum – ; oriental blood fluke;

swimmer's itch: snail fever

- S. mansoni ; smallest blood fluke
- S. haematobium ; bladder fluke; bilharziasis; urinary schistosomiasis
- S. mekonai
- S. intercalatum

GENERAL DIAGNOSIS

- Presence of ova
- Liver or rectal biopsies
- Faust and Meleney's Egg hatching technique
- Circumoval Precipitin Test (COP) of Oliver & Gonzales

LUNG FLUKES

Paragonimus westermani

- Oriental lung fluke
- Disease: LUNG FLUKE DISEASE: ENDEMIC HEMOPTYSIS
- Egg resembles coffee bean

• Specimen: stool or sputum

INTESTINAL FLUKES

Fasciolopsis buski

- Giant intestinal fluke
- Largest fluke parasitizing human
- ____; resembles eggs of Fasciola

Echinostoma ilocanum

- Garrison's fluke
- Intermediate hosts are SNAILS

Heterophyes heterophyes OF M

- Von Siebod's fluke
- Smallest fluke but deadliest fluke of man
- With _____ genital suckers

LIVER FLUKES

<u>Fasciola hepatica</u>

DO NOT DISTRIB

• Sheep liver fluke

Fasciola gigantica

- Giant Liver Fluke
- Infects cattle in Philippines

Clonorchis sinensis

• Most important liver fluke

Egg resembles _____

PROTOZOANS

	Protozoa	Transmissi on	Morphology	Clinical Findings	Diagnosis		
	E. histolytica	Fecal-oral	 Oocyst Troph: bullseye shaped nucleus; RBC in cytoplasm 	Asymptoma tic carrier Bloody diarrhea Liver abscess	Fecal smear Serology CT Scan		
IEDTE	G, lamblia	Fecal-oral	 Oocyst Flagellated trophozoite 	Foul- smelling, greasy diarrhea	Fecal smear Immunoassa y		
UIE	lsospora spp.	Fecal-oral	Oocyst	Severe diarrhea and malabsorpti on in AIDS patient	Fecal exam Biopsy Eosinophilia		
	C. cayetanensis	Oocyst from stool	Oocyst	Watery diarrhea Nausea and vomiting	Oocyst fluoresce under UV light		
	Cryptosporidi um	Fecal-oral	Oocyst	Watery diarrhea	Fecal exam Biopsy in small intestine		

			Abdominal pain & vomiting				Congenit al			
T. vaginalis	Sexually- transmitte d	Trophozoite ONLY	Vaginal itching Burning on	Urinalysis Vaginal discharge examination						
			urination Yelloe-	cxamination		Leishmania spp.	Sandfly bite Blood	 Promastigot e Amastigote 	Cutaneous leishmaniasi s	Blood smear Biopsy of
			green, frothy vaginal				transfusio n Zoonotic			skin, spleen or liver
N. fowleri	Lives in freshwate r lake	Amoeba OPI	Acute meningitis	CSF examination	TE	African Trypanosomes • T.	Tsetse fly Blood transfusio n	 Motile trypomastig ote Epimastigot 	African sleeping sickness	Trypomastig ote in blood, spinal fluid and lymph
Acanthamoe ba spp.	Lives in freshwate r lake	Amoeba and cyst stage in brain	Chronic granulomat o-us brain abscess	CSF; brain tissue; corneal scrapping	Е	rhodesie nse • T. gambien se		e		fluid Serology
	Eye infection from dirty contact lenses		Corneal infection	exam		T. cruzi	Kissing Bug Blood transfusio n	 Trypomastig ote Amastigote Epimastigot e 		Trypomastig ote in blood
T. gondii	Ingestion of oocyst in raw pork Inhalation	Oocyst (infectious) Trophozoite	Congenital Disseminati on infection	Serology CT Scan			_ 11	<u> </u>	<u> </u>	<u> </u>
	of oocyst									