Clinical Chemistry

QUALITY CONTROL

TERMS TO REMEMBER:

- **Quality:** a feature/characteristic of a product which meets the expected criteria of a consumer (customer).
- **Control:** a solution that resembles a human sample that is used for QC purposes only
- **Standard:** a colorless solution with **known** concentration of substances used for calibration
- **Specificity:** defined as the ability of a method to measure the analyte of interest ONLY.
- Sensitivity: defined as the ability of a method to measure analytes even at its lowest concentration
- Accuracy: nearness of measured value to that of the target value
- **Precision:** nearness of measured values to each other
- **Diagnostic specificity:** defined as the ability of a method to detect a population of individuals **absent of a disease process**
- **Diagnostic sensitivity:** defined as the ability of a method to detect a population of individuals having the **presence of disease**
- Intralab QC (internal QC): control samples are run simultaneously with a patient to ensure reliability of methods and result. Used for daily monitoring of accuracy and precision of method used. Detects random and systematic errors.
- Interlab QC (external QC): laboratories are given samples with unknown concentrations for them to test and results are compared with other laboratories thus maintaining "long-term accuracy" to methods utilized.
 - Results difference of **greater than 2SD** indicates disagreement with other lab included.
- Mean: average of a set of values (mean = $\Sigma x/n$). Measures central tendency.
- Median: midpoint of a set of values
- Mode: the most frequent among all values/data
- Range: Simplest expression of spread or distribution

• **Standard Deviation:** it is defined as the measure of dispersion of values to that of the mean. Most frequent used measure of variation.

$$\circ \quad SD = \sqrt{\frac{\Sigma(\mathbf{x} - \mathbf{mean})^2}{n-1}}$$

• Coefficient of variation: mean expression in percentile. Index of precision

$$\circ \quad CV = \frac{SD}{mean} x \ \mathbf{100}$$

- Variance: square of SD. V=SD²
- **T-test:** this is used to assess if there is a statistical difference between the **means** of 2 groups of data
- F-test: this is used to assess if there is a statistical difference between the SD of 2 groups of data
- Shewhart Levey-Jennings Chart: most widely used QC chart
- Trend: six or more consecutive values that either increase or decrease gradually (will cross the mean) main cause: reagent deterioration
- Shift: six or more consecutive values that are distributed on one side or other side of the mean (does NOT cross the mean) main cause: improper instrument calibration

WESTGARD RULES			
TYPE OF ERROR	RULES	SOURCES OF ERROR	
RANDOM	1 _{2s} (warning	By chance errors: mislabeling, pipetting	
- Tests for imprecision	rule), 1 _{3s} and	error, fluctuations in temperature &	
	R _{4s}	voltage	
SYSTEMATIC	2_{2s} , 4_{1s} and	Improper calibration, reagent	
- Tests for inaccuracy	10x	deterioration, contaminated solutions,	
		instability of both samples and solutions	

- **Delta check:** used to check if there are significant differences between present set of values to that of past values on the sample of same individual.
- Six Sigma: a way of improving product processing to eliminate defects

$A = -logT = \frac{\log 1}{T}$

INSTRUMENTATION

DEFINITION OF TERMS:

- Energy: entity that this transmitted by electromagnetic waves
- Wavelength: defined as the distance between two successive peaks
- Nanometer: unit expression of wavelength
- Frequency: number of waves that passes a point of observation per one unit of time

SPECTROPHOTOMETRY

- Measures transmitted light in a colored solution
- Measurement is based upon Beer-Lambert-Bouguer Law (Beer's Law/Beer-Lambert's Law)

BEER-LAMBERT LAW

- States that concentration of an unknown analyte is **directly proportional to the light absorbed and inversely proportional to light transmitted.**
 - \checkmark Absorbance is proportional to the inverse log of transmittance

SINGLE-BEAM SPECTROPHOTOMETER

Photo reference: Henry's Clinical Diagnosis and Management by Laboratory Methods, 22nd edition

DOUBLE-BEAM SPECTROPHOTOMETER

- Double- beam in time 1 photodetector
- Double-beam in space 2 photodetectors (1- sample beam, 2- reference beam)

PARTS OF SPECTROPHOTOMETER

- 1. LIGHT SOURCE
 - ✓ Tungsten: for visible and near infrared region
 - ✓ Deuterium: for UV region

✓ Xenon discharge lamp: for UV and Visible region

- 2. ENTRANCE SLIT minimizes the entry of stray light to the monochromator
- 3. MONOCHROMATOR isolates specific wavelength
 - ✓ Prisms: light is **refracted**

- ✓ Diffraction gratings: light is **bent; most commonly used**
- ✓ Filters: light enters one side and is **reflected** on the other side.
- **4. EXIT SLIT** controls bandpass (total range to which wavelengths are transmitted. The narrower the bandpass, the grater the resolution)
- CUVETTE contains the solution (known as absorption cell/analytical cell/sample cell)
- 6. **PHOTODETECTOR** aids in the conversion of light transmitted to photoelectric energy
 - Barrier layer cell: simplest. Temperature sensitive. Radiation and visible region.
 - ✓ Photodiode: has excellent linearity.
 - Photomultiplier tube: most commonly used. Chemiluminiscence and Fluometry. Measures visible and UV region.
 - ✓ Phototube: cathode and anode enclosed in glass case. Fluometry.
- 7. **READ-OUT DEVICE** a monitor that displays the output

ATOMIC ABSORPTION SPECTROPHOTOMETRY

- Measures the amount of light that have been absorbed by a ground state atom
- For measurement of unexcitable metals like calcium and magnesium
- Hollow-cathode lamp: light source
- Atomizer: used for the conversion of ions to atoms
- Chopper: used to modulate amount of light from the hollow-cathode lamp

FLAME EMISSION PHOTOMETRY

- Flame permits the excitation of the electrons; after which, electrons return to a ground state thus radiation is emitted.
- Flame serves as both light source and cuvette.
- Internal standards used: Cesium and Lithium (preferred)
- For measurement of excited ions such as sodium (yellow) and potassium (violet).

• Calcium also shows a colored (brick red) flame

FLUOROMETRY

- Light is absorbed by atoms at a specific wavelength and is emitted at a longer wavelength (with lower energy)
- Light source: xenon lamp or mercury arc
- There are two monochromators
 - Primary monochromator: selects wavelength that is best absorbed by solution that is to be measured
 - ✓ Secondary monochromator: this prevents the incident light from striking the detector
- Disadvantage: Quenching

TURBIDIMETRY

- Measures light blocked by molecules
- Used for immunoglobulins, immune complexes and complement

NEPHELOMETRY

- Measures light scattered by molecules
- Used for measuring amount of antigen-antibody complexes

CHROMATOGRAPHY

- Separation is based upon differences in characteristics (both physical and chemical) of substances
- Used for amino acid determination, drugs and sugars

LIST DOWN ALL TYPES OF CHROMATOGRAPHY AND RESEARCH ON ITS PURPOSE/PRINCIPLE

POTENTIOMETRY

- Measures electric potential
- pH electrode glass electrode
- pCO₂ electrode
- ion selective electrode
 - ✓ Sodium: glass electrode
 - ✓ Potassium: Valinomycin gel
 - ✓ Chloride: Tri-N-octyl propyl ammonium chloride decanol

ELECTROPHORESIS

• Separation of proteins is aided by an electric current

	IONS	POLE
POSITIVE	CATIONS +	CATHODE
NEGATIVE	ANIONS +	ANODE

- pH of buffer: 8.6
- support materials:
 - ✓ Agarose gel separation by electric charges
 - ✓ Cellulose acetate separation by molecular size
 - ✓ Polyacrylamide gel separation by charge and molecular size

ELECTROPHORETIC PATTERN OF CERTAIN CONDITIONS

Alpha ₁ -globulin flat curve	Juvenile cirrhosis
Alpha2-globulin band spike Nephrotic syndrome	
Beta-gamma bridging	Hepatic cirrhosis
Monoclonal gammopathy (gamma spike)	Multiple myeloma
Polyclonal gammopathy	Rheumatoid arthritis and malignancy
Small spike in Beta-region	Iron deficiency anemia

CARBOHYDRATES

- Composed of carbon, hydrogen and oxygen
- Are water soluble
- Are important source of energy for the body's mechanisms
- Classifications:
 - ✓ Monosaccharides: Glucose, fructose and galactose
 - ✓ Disaccharides: maltose (glucose + glucose), lactose (galactose + glucose) and sucrose (fructose + glucose; most common non reducing sugar)
 - ✓ Polysaccharides: starch and glycogen

GLUCOSE

- Primary sugar found circulating in the body
- Carbohydrate metabolism:
 - ✓ Glycolysis: glucose → lactate or pyruvate → energy (\uparrow glucose)
 - ✓ Glycogenolysis: breakdown of glycogen to glucose (↑ glucose)
 - ✓ Glycogenesis: formation of glycogen from sugars for storage (↓glucose)
 - ✓ Gluconeogenesis: formation of glucose from non-carbohydrate sources (↓ glucose)
- Hormones for glucose regulation
 - ✓ Hypoglycemic
 - \circ $\;$ Insulin released by β cells of islet of Langerhans
 - Entry of glucose in the cell
 - Falsely low measurement of serum insulin is seen in the presence of **hemolysis.**
 - ✓ Hyperglycemic
 - $\circ~$ Glucagon released by α cells of islet of Langerhans
 - Primary hormone that increases glucose concentration.
 - NV in fasting plasma: 25-50pg/mL
 - Somatostatin released by delta cells of islet of Langerhans

PROPERTY OF MEDTECH REVIEW NOTES4 | P a g e

• Inhibits the action on inulin, GH and glucagon.

 \circ Cortisol

- o Epinephrine
- o Growth hormone
- o Thyroxine
- o ACTH
- MUST KNOW FOR SPECIMEN FOR GLUCOSE DETERMINATION
 - ✓ FBS should be obtained from an 8-10 hours fasting sample
 - ✓ In terms of glucose levels: capillary > venous but < arterial
 - ✓ Glucose is metabolized at:
 - Room temperature: 7 mg/dL/hr
 - 4°C: 2 mg/dL/hr
 - Tube of choice: Gray top (anticoagulant: _____; anti-glycolytic agent: _____)

GLUCOSE DETERMINATION

METHOD	PRINCIPLE	REAGENTS	END PRODUCT/ COLOR REACTION
i. CHEMICAL	METHOD		
A. OXIDATION REDU	CTION METHOD		
1. ALKALINE COPPER			
Folin-Wu - Modification: Benedict's Test	Copper Reduction	Alk. Copper reagent Phosphomolybdic Acid	Molybdenum – BLUE
Nelson- Somogyi	Copper Reduction	Alk. Copper reagent Arsenomolybdic	Molybdenum – BLUE

		acid		
Neocuproine 2. ALKALINE FERRIC REDU	Copper Reduction	Cuprous ions Neocuproine	Cuprous- Neocuproine Complex – YELLOW/ YELLOW ORANGE	
Autoanalyzer (Hagedorn-Jensen)	Ferricyanide reduction (Inverse Colorimetry)	K₃Fe(CN) ₆	K ₃ Fe(CN) ₆ ⁻⁴	
B. Condensation Method				
Ortho-Toluidine	Dubowski reaction; Condensation Method	O-toluidine Glacial Acetic Acid	Glycosylamine – BLUE GREEN	
II. ENZYMATIC METHODS	II. ENZYMATIC METHODS			
Glucose Oxidase - Saifer Gernstenfield - Clarke electrode	Enzymatic - Colorimetric - Polarographic	Glucose Oxidase Peroxidase O-dianisidine	Oxidized o- dianisidine – ORANGE BROWN	
Hexokinase (REFERENCE METHOD)	Enzymatic	Hexokinase G6PD	NADPH ⁺	

LABORATORY TESTS

- Screening Tests
 - ✓ **Fasting Blood Sugar** 8-10 hours fasting

Normal: <100 mg/dL

• Impaired fasting glucose: 100-125 mg/dL

- **Diabetic:** ≥126 mg/dL
- ✓ 2-hours post-prandial a fasting blood samples is extracted, after which,
 - patient is given glucose load (75g). After 2 hours, blood glucose is measured.
 - Normal: <140 mg/dL
 - Impaired: 140-199 mg/dL
 - Diabetic: <u>></u> 200 mg/dL
- Confirmatory Tests
 - ✓ Oral Glucose Tolerance Test series of glucose testing
 - Patient is instructed to consume a normal to high CHO diet per day for 3 days prior to procedure
 - \circ Patient should be ambulatory
 - The patient should be finished within 5 minutes
 - Glucose loads: adult (75g), pregnant (100g) and children (1.75g/kg)
 - Normal: <140 mg/dL
 - Impaired: 140-199 mg/dL
 - Diabetic: <u>></u> 200 mg/dL
- Monitoring Test
 - ✓ HbA1c long term monitoring (2-3 months)
 - \circ $\;$ Dependent upon the patients' RBCs lifespan $\;$
 - \circ $\;$ Sample: EDTA whole blood, non-fasting $\;$
 - For every 1% increase in HbA1c = 35mg/dL change in plasma glucose!
- Fructosamine short term monitoring (2-3 weeks)
 - ✓ Levels of albumin affects results

CLINICAL SIGNIFICANCE

HYPERGLYCEMIA

Increased glucose levels

	DIABETES MELLITUS	DIABETES INSIPIDUS	
	Involvement of insulin	Involvement of ADH	
	Polyuria	Polyuria (with no	
		hyperglycemia)	
	High specific gravity urine	Low specific gravity urine	
	DIABETES	MELLITUS	
	TYPE 1	TYPE 2	
	Autoimmune process	Resistance to insulin	
	Insulin-dependent DM	Non-insulin dependent DM	
	Juvenile-onset DM	Adult-onset DM	
HYPOGLYCEMIA	Decreased glucose levels		
	Whipple's triad:		
	✓ Low blood glucose level (<60 mg/dL)		
	 Presence of signs and symptoms 		
	✓ Reversal of symptoms (if glucose is administered)		
GESTATIONAL DM	Due to hormonal imbalance; occ	urs in pregnant women	

GLYCOGEN STORAGE DISEASES		
ТҮРЕ	DEFECTS	
la – Von Gierke	Glucose-6-phosphatase	
II – Pompe	Lysosomal acid alpha glucosidase (GAA) acid maltase	
III – Cori-Forbes	Glycogen debranching enzyme	
IV – Andersen	Glycogen branching enzyme	
V – McArdle	Muscle phosphorylase	
VI – Hers	Glycogen phosphorylase	
VII – Tarui	Phosphofructokinase	
XI – Fanconi-Bickel	Glycogen transporter 2	
0	Glycogen synthetase	

LIPIDS AND LIPOPROTEINS

- Lipids are more commonly referred to as **fats**
- Insoluble in water but soluble in organic solvents
- Major forms of lipids:
 - ✓ FATTY ACIDS
 - Simplest
 - Building blocks of lipids
 - Saturated (no double bonds) or unsaturated (with double bonds)
 - ✓ TRIGLYCERIDES
 - Tri three molecules of fatty acids + one molecule of glycerol
 - Breakdown is facilitated by lipoprotein lipase 0
 - Primary cause of turbid serum 0
 - Main storage form of lipid 0
 - Requires a fasting specimen (12-14 hours) 0
 - > 500mg/dL highg risk for CAD
 - o RV: <500 mg/dL
- normal -
- 150-199 mg/dL borderline high
 - high TAG -
- 200-499 mg/dL >500 mg/Dl
- very high TAG (acute / recurrent

- pancreatitis)
- ✓ CHOLESTEROL
 - Not readily catabolized = not a source of fuel
 - No fasting is required
 - Four ringed structure made by hepatocytes
 - Constituent of cell membranes and precursor of some hormones (steroids: progestin, glucocorticoids, mineralocorticoids, androgen and estrogen).
 - Estrogen promotes transport and excretion of CHOLE
 - Should be measured in adults \geq 20 y/o at least once every 5 years.

- <200 mg/dL • RV:
 - desirable =
 - 200 239 mg/dL borderline high =
 - high cholesterol ≥240 =
- Two forms: esterified (60-70%) and free cholesterol (30-40%)
- o TAG and Chole most important lipids in management of CAD
- ✓ PHOSPHOLIPIDS
 - Structure: 2 fatty acids + phospholipid attached to glycerol
 - Most abundant lipid 0
 - Can also be found as surfactants in lungs. Def in neonates: RDS 0
 - Forms: Lecithin/phosphatidylcholine (major, 70-75%), sphingomyelin 0 (18-20%), phosphatidylserine and phosphatidylethanolamine (3-6%) and lysophosphatidylcholine (4-9%)
 - RV: 150 380 mg/dL (serum)
 - o Sphingomyelin
 - Component of cell membranes (RBC and nerve sheath)
 - Niemann-pick dxs: accumulation in the liver and spleen. (lipid storage disorder)
- ✓ LIPOPROTEINS
 - Carrier proteins for lipids
 - Major lipoproteins 0
 - A. Chylomicrons: largest and least dense.
 - Contains mostly TAG.
 - Produced in the intestines.
 - B. VLDL/Pre-beta lipoprotein. Made in the liver.
 - C. HDL/ Alpha Lipoprotein: smallest but most dense lipoprotein.
 - Removes excess cholesterol from cells.
 - Produced by liver and intestine.
 - Maintains balance of cholesterol.

- CDC Reference method for determination: ultracentrifugation, precipitation with heparin-MnCl₂ and Abell-Kendal assay.
- **D. LDL/Beta Lipoprotein:** Marker of CHD risk.
 - most cholesterol-rich and most atherogenic.
 - major end-product of VLDL catabolism.

	HDL	LDL	VLDL	Chylomicrons	
	Good	Bad cholesterol	Carrier of	Carrier of	
	cholesterol		endogenous	exogenous TAG	
			TAG		
Migration	Alpha	Beta	Pre-beta	Origin	
Size	70-100	100-300	2000	> 2000	
Density	1.063-1.125	1.019-1.063	0.95-1.006	< 0.95 (top	
	(bottom layer)			layer)	
Protein	50%	20%	4-8%	1-2%	
	LIPID CONTENT (%)				
Free cholesterol	3-5	6-8	4-8	1-3	
Esterified	15-20	45-50	16-22	2-4	
TAG	2-7	4-8	45-65	80-95	
Phospholipid	26-32	18-24	15-20	3-6	
Lipid: protein	50:50	80:20	90:10	99:1	
ratio					
Apolipoproteins	A-1, A-II, C	B-100, E	B-100, A-1, C, E	A1, B-48, C, E	

- Minor lipoproteins:
 - A. IDL Subclass
 - Migrates either in the pre-beta or beta region
 - Major apolipoprotein: Apo B-100
 - B. Lp(a) aka sinking pre-beta, linked to atherosclerosis
- \circ Abnormal lipoproteins: LpX linked to obstructive jaundice, β-VLDL aka floating β lipoprotein

- Indicator of cholestasis.
- Beta-VLDL: floating beta lipoprotein
 - Migrates with LDL in beta region found in type 3 hyperlipoproteinemia or dysbetalipoproteinemia.
 - VLDL rich in cholesterol

APOLIPOPROTEINS

- Apo A major protein component of HDL
 - ✓ Apo A-I: LCAT activator
 - ✓ Apo A-II: may inhibit hepatic & lipoprotein lipases; increases plasma TAG
- Apo B major protein component of LDL
 - ✓ Apo B-48: found in chylomicron
 - ✓ Apo B-100: synthesized in liver; found in VLDL & LDL
- Apo C major protein component of VLDL; minor in HDL and LDL
 - Apo C-I: may inhibit the hepatic uptake of VLDL and cholesterol ester transfer protein
 - ✓ Apo C-II: if deficient there would be reduced clearance of TAG-rich lipoproteins
 - ✓ Apo C-III: main form found in HDL. Lipolysis of TAG-rich lipoproteins is inhibited by this form
- Minor apolipoproteins
 - ✓ Apo D: aids in the activation of LCAT
 - ✓ Apo E: Arginine rich
 - o Apo E-I
 - o Apo E-II: associated with type III hyperlipoproteinemia
 - Apo E-III: most common isoform
 - Apo E-IV: associated with high levels of LDL, increased risk for Alzheimer's and CHD

✓ Apo F, Apo H and Apo J

LIPID QUANTITATION

- 1. TRIGLYCERIDES
 - **A.** CHEMICAL METHOD (Van Handel and Zilversmit method and Modified Van Handel Zilversmit method)

STEP 1: EXTRACTION BY ORGANIC SOLVENT

- $\checkmark\,$ This is for the removal of lipids from proteins
- ✓ There is an additional adsorption step to remove non-triglycerides

STEP 2: SAPONIFICATION OR HYDROLYSIS BY KOH IN ETOH

✓ TAG → fatty acids + glycerol

STEP 3: OXIDATION

✓ Oxidizes glycerol to measurable compounds

STEP 4: COLORIMETRY

- ✓ 500-600nm
- **B.** ENZYMATIC METHOD lipase and glycerokinase serve in the initial enzymatic reaction

2. TOTAL CHOLESTEROL

- A. COLOR REACTION
 - Liebermann Burchardt Reaction
 - Principle: Dehydration and Oxidation of cholesterol to form a colored compound
 - ✓ Reagents: Acetic anhydride-sulfuric acid
 - ✓ End product: Cholestadienyl monosulfonic acid GREEN
 - Salkowski Reaction
 - ✓ Methods:
 - Bloor's method extraction of cholesterol by Bloor's, L-B reaction

- Abell-Kendall method extraction of cholesterol by Zeolite, L-B reaction
- B. Enzymatic Method
 - Cholesterol oxidase reaction measures amount of hydrogen peroxide produced.
 - Interference: (+) hemoglobin, (-) Bilirubin and ascorbic acid.

CDC reference method: Abell, Levy and Brodie method (3 step method: Saponification, extraction, and colorimetry)

3. HDL

Methods: Electrophoresis & Modified Bloor's

- 4. Ultracentrifugation: density gradient
 - a. Reference method for quantitation of lipoprotein.
 - b. Svedverg (s) units
 - c. Reagent: potassioum bromide solution with 1.063 density.
- 5. Electrophoresis
- 6. Chemical precipitation (HDL and LDL)

Put here your own mnemonic for the classification

Formula for LDL-Cholesterol (LDL-C) = total cholesterol – HDL- VLDL

WRITE THE FRIEDEWALD AND DELONG'S FORMULA

Triglycerides	<150 mg/dL	150-199 mg/dL	200-499 mg/dL
HDL-C	40 mg/dL	n/a	n/a
LDL-C	<130 mg/dL	130-159 mg/dL	160-189 mg/dL
Total Cholesterol	<200 mg/dL	200-239 mg/dL	<u>></u> 240 mg/dL

STRATIFIED RISK FACTORS FOR CHD			
Age (in years)	Moderate Risk (mg/dL)	High Risk (mg/dL)	
2-19	>170	>185	
20-29	>200	>220	
30-39	>220	>240	
40- above	>240	>260	

FREDERICKSON AND LEVY'S CLASSIFICATION OF HYPERLIPOPROTEINEMIA			
TYPES	STANDING PLASMA TEST*	GEL ELECTROPHORESIS	
ΤΥΡΕ Ι	Creamy layer – Clear plasma	Normal	
TYPE IIa	Negative – Clear plasma	Increased β band	
TYPE IIb	Negative – Cloudy plasma	Increased β and pre- β band	
TYPE III	Occasional – Cloudy plasma	Increased pre- β band	
		(broad β band)	
TYPE IV	Negative – Cloudy plasma	Increased α2 band	
TYPE V	Creamy layer – Cloudy plasma	Increased α2 band	
TYPE I TYPE IIa TYPE IIb TYPE III TYPE IV TYPE V	Creamy layer – Clear plasma Negative – Clear plasma Negative – Cloudy plasma Occasional – Cloudy plasma Negative – Cloudy plasma Creamy layer – Cloudy plasma	Normal Increased β band Increased β and pre- β band Increased pre- β band (broad β band) Increased α2 band Increased α2 band	

*plasma is placed in a test tube and stored at 4°C overnight. Presence of "cream" floating and turbidity of plasma is observed for presence of chylomicron and VLDL respectively

LIPID STORAGE DISEASES		
Fabry's disease	alpha galactosidase deficiency	
Gaucher	beta galactosidase deficiency	
Krabbe	cereboside beta galactosidase deficiency	
Metachromatic Leukodystrophy	arylsufatase A deficiency	
Niemann Pick	sphingomyelinase deficiency	
Sandhoff	hexosaminidase A and B deficiency	
Tay Sach	hexosaminidase A deficiency	

LIPID	PROFILE	
Desirable	Borderline High	High

PROTEINS

- Composed of carbon, hydrogen, oxygen and nitrogen
- Most abundant macromolecule in the body
- Amphoteric in nature
- Synthesized in the liver except for immunoglobulins (which are synthesized by plasma cells)
- In alkaline Ph = proteins are negatively charged
- In acidic pH = proteins are positively charged
- Structures:
 - ✓ Primary: amino acid sequence
 - ✓ Secondary: conformations could either be alpha-helix, beta-pleated, sheath and bend form
 - ✓ Tertiary: actual 3D configuration
 - ✓ Quaternary: protein already consists of 2 or more polypeptide chains

PLASMA PROTEINS

FRACTIONS	SPECIFIC PROTEINS
Prealbumin	Aka transthyretin
	Marker for malnutrition
	2nd most predominant protein in the CSF
	Transfer T4 and retinol (Vitamin A)
	↑ Alcoholism, Chronic renal failure, steroid txm. ↓ poor
	nutrition
	RV: 18 – 45 mg/ dL
Albumin	Most abundant protein
	Acts as a transport protein
	Negative acute phase reactant
	Maintains osmotic pressure
	Elevated in Cystic fibrosis

	Negative acute phase reactant
	Low level: nephrotic syndrome
	Analbuminemia: albumin absence
	Bisalbuminemia: there are 2 bands seen in the albumin
	region
	Hypoalbuminemia: low levels of albumin
	RV: 3.5 – 5.0 g/dL
GLOBULIN	Measurement: TP – A = G
	↑ Early cirrhosis
	RV: 2.3 – 3.5 g/dL
Alpha₁ globulin	Alpha ₁ antitrypsin (AAT)
	Acute phase reactant. Released from WBC to combat inf
	Protease inhibitor
	NV 2.3-3.5 mg/dL
	AFP
	Tumor marker for hepatocellular carcinoma (hepatic and
	gonodal cancer).
	Increased in presence of twins and neural tube defect.
	Decreased in down syndrome.
	Screening for maternal AFP for NTD and DS: 15 and 20
	weeks of gestational age.
	RV: 5 ng/ml both in adults and children
	Alpha-1-acid-glycoprotein (orosomucoid)
	Carrier proteins for steroid hormones (Progesterone).
	Increased in neonatal bacterial inf.
	RV: 55-140 mg/dL
	Alpha ₁ -antichymotrypsin
	Inhibits serine Proteinases
	Acute phase reactant. Binds and inactivates PSA
	Associated with Alzheimer's dxs, \downarrow in liver dxs
	RV: 30 – 60 mg/dL
	Gc-globulin

	Affinity with vit D and actin.	
	Alpha-1-lipoprotein	
	Transports lipids	
Alpha ₂ globulin	Ceruloplasmin	
	Transports copper	
	↓ Wilson's Disease (kayser-fleisher rings: deposition in	
	cornea) Menkes' kinky-hair syndrome	
	Method: copper oxidase activity.	
	RV: 18-45 mg/dL	
	Haptoglobin	
	transports free hemoglobin	
	Acute phase reactant	
	Alpha ₂ macroglobulin	
	Inhibits protease	
	10x elevation is seen in nephrosis	Gam
	RV: 150-420 mg/dL	
Beta globulin	Pre-beta-lipoprotein	
	Transports lipids (VLDL, TAG)	
	Beta-lipoprotein	
	Transports lipids (LDL, CHOLE)	
	Beta ₂ microglobulin	
	Light chain component of HLA	
	Elevated in RA and SLE, MM, HIV and Renal Failure.	отц
	RV: 0.2-2.8 ug/dL	
	Complement System	•
	Immune response	
	\uparrow in inflammation \downarrow DIC, hemolytic anemia and malnutrition	
	CRP	
	Acute phase reactants	
	Promotes phagocytosis	
	Cardiac marker	
	RV: <1.0 mg/dL	

	Fibrinogen
	Protein present in plasma but not in serum
	Largest protein in the blood
	Precursor of fibrin clot
	Method for measurement: Parfentjev method
	RV: <1.0
	Hemopexin
	Acute phase reactant
	Binds heme
	Indicates early hemolysis
	RV: 50-115 mg/dL
	Transferrin/SIderophilin
	Transports iron
	\uparrow hemochromatosis, \downarrow liver dxs, malnutrition, nephrotic syn.
nma globulin	Immunoglobulins: synthesized in plasma cells
C C	IgG most abundant
	IgA found in mucous secretions
	IgM first to appear
	IgE allergy and anaphylactic reactions
	IgD present in surface of B cells
	CRP (in other references)

OTHERS PROTEINS

- Myoglobin
 - ✓ Carries oxygen in muscles
 - ✓ Nephrotoxin
 - ✓ Marker of chest pain (angina) and early det. Of AMI
 - \checkmark 12-3 hours of onset, peak at 8-10 hours
 - ✓ ↑ AMI, angina, rhabdomyolysis, muscle trauma, acute renal failure
- Troponin (cTnl)

- ✓ Regulates actin and myosin
- ✓ Marker for acute coronary syndrome
- ✓ Most important marker for AMI
- ✓ RV: <0.1 ng/mL</p>
- BNP
 - ✓ ↑ ventricular systolic and diastolic dysfunction
 - ✓ Congestive heart failure
- Cystatin C
 - ✓ Marker for kidney function (GFR)
 - ✓ Endogenous renal marker
- Beta-trace protein
 - ✓ Marker for CSF leakage
- Amyloid
 - ✓ Fibrous protein aggregates
- Bence-Jones protein: protein found in patients with Multiple Myeloma
 - ✓ Unique feature: Coagulates at 40-60°C and dissolves at 100°C
 - ✓ Method for measurement: Immunofixation
 - ✓ Electrophoretic pattern: "tall spike" or "monoclonal peak"

METHODS FOR ALBUMIN QUANTITATION

- Electrophoresis
- Biuret Method
 - ✓ Principle: measurement of at least 2 peptide bonds and formation of a violet colored chelate.
 - ✓ Measured at 540nm
 - ✓ Reagents: Rochelle salt (NaK tartrate), Alkaline CuSO₄, NaOH and KI
- Kjeldahl Method
 - ✓ Reference method

- ✓ Based upon the digestion of protein and measurement of nitrogen content of proteins
- ✓ Albumin nitrogen x 6.25 = albumin
- Lowry (Folin-Ciocalteu) method
 - ✓ Reagent: Phosphotungstomolybdic acid
- Dye-binding method
 - ✓ BCG: most commonly used
 - $\checkmark~$ BCP: most sensitive, specific and precise
 - \checkmark H-ABA: with salicylates and bilirubin interferences

CSF OLIGOCLONAL BANDING

- Multiple sclerosis: 2 or more IgG bands in the gamma region
- Other dxs with two more bands in the CSF: Encephalitis, neurosyphilis, Gullain-Barre syndrome, neoplastic dxs
- Serum banding in CSF: Leukemia, lymphoma and viral inf.

AMINOACIDOPATHIES

- Alkaptonuria
 - ✓ Absence of homogentisate oxidase in tyrosine pathway
 - ✓ Ochronosis: tissue pigmentation
 - ✓ Darkening of urine upon standing
- Homocystinuria
 - ✓ Impaired activity of cystathionine B-synthetase
 - \checkmark Elevated homocysteine and methionine in blood and urine
 - ✓ Screening test: Modified Guthrie Test (L-methionine sulfoximine)
- MSUD
 - ✓ Reduced or absence of a-ketoacid decarboxylase
 - \checkmark Accumulation of leucine, isoleucine and valine.
 - ✓ Screening test: Modified Guthrie Test (4-azaleucine)

- Phenylketonuria
 - ✓ Def of phenylalanie hydrolase
 - ✓ Phenylpyruvic acid in both blood and urine
 - ✓ Musty odor urine
 - ✓ Screening: Guthrie Bacterial Inhibition Assay (Bacillus subtillis)
- Tyrosinemia
 - ✓ Def. of either of these enzymes tyrosine aminotransferase, 4hydroxyphenylpyruvic acid oxidase, fumarylacetoacetate
 - ✓ Increased levels of **methionine** and **p-hydroxyphenolpyruvic acid** in blood.
 - ✓ Results to liver damage or cirrhosis

NON – PROTEIN NITROGEN

- Monitor and asses renal function.
- Result from the breakdown of protein and nucleic acids.

UREA

- Most abundant (45-50%) NPN
- Major end product of protein metabolism
- First metabolite to increase in kidney dxs
- BUN:Crea Ratio 10:1-20:1
- Urea is decreased in severe hepatic dxs
- Methods:
 - ✓ Micro-Kjeldahl Nesslerization method
 - Indirect method
 - Nitrogen x 2.14 = urea x 0.467 = BUN
 - ✓ Rosenthal method
 - Direct method
 - Diacetyl monoxime method
 - ✓ Enzymatic method
 - Urease
 - ✓ IDMS
 - o Reference method

CREATININE

- Major end product of muscle catabolism
- Produced by three AA: methionine, arginine and lysine
- Index of overall renal function
- Evauluate fetal kidney maturity
- 100% is excreted

- Creatine: 100% is reabsorbed by kidney
- RV: Male = 0.9 1.3 mg/dL (80 115 umol/L) Female = 0.6 - 1.1 mg/dL (53 - 97 umol/L)
- Methods:
 - ✓ Jaffe reaction
 - ✓ Note: falsely elevated in px taking caphalosporin
 - **Color reagent:** Alkaline picrate
 - Lloyd's reagent: sodium aluminum silicate
 - o Fuller's Earth: aluminum magnesium silicate
 - Enzymatic method
 - Creatinine aminohydrolase CK Method
 - o Creatinase-hydrogen peroxide method

AMINO ACIDS

• Building blocks of proteins

AMMONIUM

- Used to monitor hepatic coma
- Important indicator of Reye's syndrome

URIC ACID

- Major product of purine metabolism
- Forms crystals in joints (tophi)
- Methods:
 - ✓ Folin method
 - ✓ Henry's method
 - ✓ Enzymatic method

LIVER FUNCTION TEST

Figure 21-2 Schematic summary of the pathway of bilirubin (*Bili, in brown circles*) transport and metabolism. Bilirubin is produced from metabolism of heme, pri in the spleen, and is transported to the liver bound to albumin. It enters the hepatocyte by binding to a transporter protein (*red crescents*) and crosses the cell mem (*circled 1*), thus entering the cell. It binds to Y and Z proteins (*not shown*) and then to ligandin for transport to the smooth endoplasmic reticulum (SER). In the SER, bi is conjugated to glucuronic acid by UDP-glucuronyl transferase 1 (*circled 2 and labeled GT*), producing monoglucuronides and diglucuronides of bilirubin—Bili-Gu ar (Gu). Conjugated bilirubin is then secreted into the canaliculi (*circled 3*) by the adenosine triphosphate-binding cassette transporter protein MRP2/cMOAT/ABCC2 (*as blue crescents*). In overproduction disease (A), such as hemolytic anemia, unconjugated bilirubin is produced at rates that exceed the ability of the liver to clear it, le to a usually transient increase in unconjugated bilirubin in serum. In both Gilbert's and Crigler-Najjar syndromes, mutations in the gene encoding UDP glucuronyl trans (*UDPGT1A1*), shown at **C** in the figure, result in buildup of unconjugated bilirubin in hepatocytes and ultimately in serum. In Gilbert's syndrome, there may also be a in the bilirubin transporter protein, shown at **B** in the figure. Mutations in the *MRP2/cMOAT/ABCC2* gene result in defective secretory proteins, causing buildup of conju bilirubin in hepatocytes and, ultimately, in serum, resulting in the Dubin-Johnson syndrome (**D**), an autosomal recessive disease. Conjugated hyperbilirubinemia found in the Rotor syndrome, possibly virus induced. In adults, blockade of any of the major bile ducts, especially the common bile duct, by stones or space-occu lesions such as tumors (**E**), is the most common cause of conjugated hyperbilirubinemia. *Hb*, Hemoglobin; *RE*, red blood cell.

Photo reference: Henry's Clinical Diagnosis and Management by Laboratory Methods, 22nd edition

METHODS

- Van den Bergh: color reaction for bilirubin
 - ✓ Color reagent: Diazo reagent
 - Product: Azobilirubin
 - ✓ Evelyn-Malloy
 - Medium: ACID
 - Dissociating agent: 50% methanol
 - End color: red/reddish purple
 - ✓ Jendrassik-Grof
 - Medium: ALKALINE
 - **o** Dissociating agent: Caffeine sodium benzoate
 - End color: blue
- Icterus index
 - ✓ Applicable to newborn and neonates
- Bromsulfonpthalein Dye Excretion test
 - ✓ Rosenthal White
 - o Double collection method
 - o Collection is done after 5 mins and 30 mins
 - Reference values: 50% dye retention (5mins) 0% (30mins)
 - ✓ Mac Donald
 - \circ Single collection method
 - Collection: done after 45 mins (<u>+</u> 5% dye retention)

DISEASES

- Gilbert syndrome: defect in transport protein in liver
- Crigler-Najjar syndrome: defective conjugation due to deficiency of UDP-GTase
- Dubin-Johnson syndrome: defective excretion due to blockage by stones

ENZYMES

• Catalyzes reaction

DEFINITION OF TERMS

- Apoenzyme: protein portion of enzyme without cofactor
- Holoenzyme: complete active enzyme
- Active site: site where enzymatic reaction occurs
- Allosteric site: site other than the active site
- Isoenzyme: forms of enzyme that are different from each other but still catalyzes same reaction

CATEGORIES

1. Oxidoreductase

- ✓ For oxidation/reduction reactions
- ✓ Ex: LDH, G6PD and Malate dehydrogenase

2. Transferase

- ✓ Catalyzes transfer of groups from one substrate unto another
- ✓ Ex: AST, ALT, CK, GGT

3. Hydrolase

- ✓ Hydrolysis
- ✓ Ex: ACP, ALP, 5'NT, AMS, LPS, CHS

4. Lyase

- ✓ Removal of groups but with no hydrolysis
- ✓ Ex: Aldolase

5. Isomerase

✓ Interconversion of isomers

6. Ligase

- ✓ Joins to 2 substrate molecules
- ✓ Ex: synthases

ENZYME	METHODS	SUBSTRATES	FACTS
	HEPATIC	ENZYME PROFILE	
ALP Liver Kidney Bone Placenta Intestine WBC	Bodansky Shenowara Jones King-Armstrong Bessy Lowry-Brock	B-glyceroPO ₄ B-glyceroPO ₄ p-nitrophenylPO ₄ p-nitrophenylPO ₄	Optimum pH: 10 Greatly elevated in Paget's disease Avoid using EDTA-Citrate- Oxalate
ALT (SGPT) Liver RBCs	Reitman-Frankel (DNPH)	Alanine α-keto	Liver-specific Marked elevation with viral hepatitis De ritis ratio: >1 = viral; <1 = non-viral
LD All tissues	Wacker Method (forward) Wrobleuski La Due (reverse) Wrobleuski Cabaud Berger Broida		NAD+ (cofactor) LD4 and LD5 Storage: 25°C up to 24 hours
GGT Canaliculi of hepatic cells, Kidney, Prostate and Pancreas	SZAZ	Gammaglutamyl p- nitroanilide	Most sensitive marker for alcoholic hepatitis
ChE	Pseudo- Michael; Ellman	Acetylcholine	ChE: CNS, RBC, Lungs, Spleen Pseudo: Liver – Succinylcholine (relaxant);

PROPERTY OF MEDTECH REVIEW NOTES17 | P a g e

			anesthetic poisoning
	CARDIAC	ENZYME PROFILE	
CK Cardiac, skeletal and brain tissues	Tanzer-Gilvarg (forward) Oliver-Rosalki (reverse)		CK-BB (fastest migrating; most anodal), CK-MB, CK- MM (slowest; least anodal) Sensitive indicator of AMI & Duchenne disorder Highest elevation of total CK: Duchenne's muscular dystrophy
AST (SGOT) Liver, heart, skeletal muscle	Karmen Method (Ph 7.5; 340 nm)	Aspartate α-keto	Light and pH sensitive Most sensitive enzyme for skeletal muscle disease Inhibited by all anticoagulants except heparin (but ammonium heparin should not be used)
LD All tissues	Wacker Method (forward) – pH 8.8 Wrobleuski La Due (reverse) – pH 7.2 Wrobleuski Cabaud Berger Broida		LD1 (anodic & heat stable) LD2 (heat stable & major isoenzyme in the sera of healthy persons) LD5 (cathodic & cold labile) Flipped ratio: LD1>LD2

Myoglobin			LD/HBD(LD1) ratio: 1.2- 1.6; if 0.8-1.2 suspect for MI Responsible for O ₂ supply of striated muscle
			(tropomyosin-binding) & C (calcium-binding)
	ACUTE PAN	ICREATITIS PROFILE	
AMS Salivary glands,	Saccharogenic Iodometric/Amyloclastic Chromogenic	Pancreatic AMS: diastase Salivary AMS:	MicroAMS: unbound (free)
Pancreas	Kinetic Method	ptyalin	MacroAMS: bound to IgG and IgA
			Earliest pancreatic marker Smallest enzyme in size Salivary AMS: inhibited by wheat germ lectin
LPS Pancreas	Cherry-Crandall Sigma-Tietz	Olive Oil/Triolein (pure form of TAG)	End product: Fatty Acids
	litration		Most specific pancreatic marker
	PROSTATI	C CANCER PROFILE	
ACP RBC Prostate	Chemical Inhibition Test RBC-ACP: inactivated by Cu++, unaffected by Tartrate P-ACP: unaffected by Cu++, inactivated by	Organophosphates	Very labile (add 5M acetate buffer/citrate tablet to preserve)

PROPERTY OF MEDTECH REVIEW NOTES18 | P a g e

	Tartrate		
PSA			Most useful for tumor marker for prostate cancer
			RR: 0-4ng/mL
ACUTE	MYOCARDIAL INFARCT	ON MARKERS (Bishop,	Rodriguez, Coderes)
ACUTE	MYOCARDIAL INFARCT	ON MARKERS (Bishop,	Rodriguez, Coderes)
Marker	Onset (hours	Peak (hours)	Duration (hours)
ACUTE	MYOCARDIAL INFARCT	ON MARKERS (Bishop,	Rodriguez, Coderes)
Marker	Onset (hours	Peak (hours)	Duration (hours)
Myoglobi	in 1-3	5-12	18-30
ACUTE	MYOCARDIAL INFARCT	ON MARKERS (Bishop,	Rodriguez, Coderes)Duration (hours)18-307days up to 10-14days
Marker	Onset (hours	Peak (hours)	
Myoglobi	in 1-3	5-12	
Trop I	3-4	10-24	
ACUTE	MYOCARDIAL INFARCT	ON MARKERS (Bishop,	Rodriguez, Coderes)Duration (hours)18-307days up to 10-14days5-10 days
Marker	Onset (hours	Peak (hours)	
Myoglobi	in 1-3	5-12	
Trop I	3-4	10-24	
Trop T	3-6	12-18	
ACUTE	MYOCARDIAL INFARCT	ON MARKERS (Bishop,	Rodriguez, Coderes)Duration (hours)18-307days up to 10-14days5-10 days48-72
Marker	Onset (hours	Peak (hours)	
Myoglobi	in 1-3	5-12	
Trop I	3-4	10-24	
Trop T	3-6	12-18	
CK-MB	4-6	12-24	
ACUTE	MYOCARDIAL INFARCT	ON MARKERS (Bishop,	Rodriguez, Coderes)Duration (hours)18-307days up to 10-14days5-10 days48-725 days
Marker	Onset (hours	Peak (hours)	
Myoglobi	in 1-3	5-12	
Trop I	3-4	10-24	
Trop T	3-6	12-18	
CK-MB	4-6	12-24	
AST	6-8	24	

ELECTROLYTES

ELECTRONEUTRALITY

Na⁺ + K⁺ + 7 = Cl⁻ + HCO₃⁻ + 25

ANION GAP: difference between unmeasured anions and unmeasured cations

AG = Na⁺ - (Cl⁻ + HCO₃⁻)

 $AG = Na^+ + K^+ - (Cl^- + HCO_3^-)$

Ref. range: 7-16 mmol/L

Ref. range: 10-20 mmol/L

ELECTROLYTES	INFORMATION		
Sodium	Most abundant cation in the ECF		
	Has the greatest influence in serum osmolality		
	Aldosterone: responsible for the reabsorption in tubules		
	Atrial natriuretic factor: blocks secretion of both aldosterone & renin		
	Hyponatremia is the most comm	on electrolyte disorder	
	~for every 100mg/dL increase in t	blood glucose, there is a decrease	
	by 1.6 mmol/L of serum sodium	-	
	Hypernatremia	Hyponatremia	
	Excessive water loss	Increase water retention	
	Water intake is decreased	Water imbalance	
	Increase Na+ intake/retention	Sodium loss	
	Methods:		
	Flame Emission Photometry (FEP) - yellow		
	ISE – glass aluminum silicate		
	AAS		
	Colorimetry - Albanese Lein		
Potassium	Major intracellular cation		
	Regulates ICF volume regulation and H+ concentration,		
	contraction of the heart and excitability of mucles		
	Hyperkalemia	Hypokalemia	

	Extracellular shift	Renal loss
	Increased intake	GLIOSS
	Renal excretion is decreaed	Intracellular shift
	Artifactual (eg. Hemolysis	Intake is decreased
	thrombocytosis)	
	Methods:	
	FEP – violet	
	ISE – valinomycin gel	
	AAS	
	Colorimetry – Lockhead and Purc	ell
Chloride	Major extracellular anion	
	Only anion that serves as an enzy	me activator
	Sweat chloride: diagnosis for cyst	ic fibrosis
	Hyperchloremia	Hypochloremia
	GI loss	Hyperparathyroidism
	Diabetic ketoacidosis	Low reabsorption of HCO ₃
	Low Na+ levels	
	Mineralocorticoid excess &	
	deficiency	
	Methods:	
	Mercurimetric method: Schales a	nd Schales (indicator:
	diphenylcarbazone)	
	Coulometric amperometric titrati	on: Cotlove chloridometer
	Colorimetry	
	ISE – electrodes with AgCl membr	anes
Calcium	Ion that is the most abundant in t	he body
	3 rd most abundant in blood	
	99% (bone) and 1% (blood)	
	PTH: promotes bone resorption	
	Calcitonin: promotes bone depos	ition
	Vitamin D3: promotes intestinal a	bsorption of calcium
	Methods:	

PROPERTY OF MEDTECH REVIEW NOTES20 | P a g e

	Clark & Collip Precipitation (titration with KMnO ₄)
	FEF
	AAS – Telefence method
• •	ISE – liquia memorane
Magnesium	2 th major cation in ICF
	4 th most abundant ion in the body
	2 nd mostly affected by hemolysis (after potassium)
	Methods:
	AAS – reference method
	Colorimetry – Calmagite (reddish-violet)
	Dye method – Titan yellow
Bicarbonate	2 nd most abundant ECF anion
	Acts as buffer
	Diffuses out of the cell in exchange for chloride
	Increased levels: alkalosis, vomiting, hypokalemia
	Decreased levels: acidosis
	Methods:
	ISE – Clark electrode
	Enzymatic method: Phosphoenolpyruvate carboxylase &
	dehydrogenase
Phosphorus	
riiospiiorus	Inversely propertional to calcium and DTH
	Best preserved by acidic filtrate

SUMMARY (memorize this 🙂)

ELECTROLYTES	FUNCTION
HCO ₃ , K, Cl	Acid-Base Balance
Ca, Mg	Blood coagulation
Mg, Ca, Zn	Cofactors in enzyme activation
K, Mg, Ca	Myocardial rhythm and contractility
K, Ca, Mg	Neuromuscular excitability
Mg, PO ₄	Production and use of ATP from glucose
Mg	Regulation of ATPase pumps
Na, K, Cl	Volume and osmotic regulation

BLOOD GAS

DEFINITION OF TERMS:

- Acid: a compound that could donate a H+ ion
- **Base**: a compound that could **accept** a H+ ion
- Acid-Base Balance: a mechanism by which the pH of blood is maintained at 7.35-7.45 for homeostasis
- Buffer: a weak acid/base with its conjugate salt that resists changes in Ph

ACID BASE BALANCE

HENDERSON-HASSELBACH EQUATION

• Implicates the relationship between pH, and the two involved organs - lungs and kidneys

$$pH = 6.1 + \log \frac{HCO_3}{PCO2 \ x \ 0.0307}$$

EXPANDED FORM:
$$pH = 6.1 + \log \frac{[TCO2 - (PCO2 x 0.03)]}{PCO2 x 0.03}$$

FOUR BASIC ABNORMAL STATES						
Imbalance	рН	pCO ₂	H ₂ CO ₃	HCO₃	Primary compensation	Seen in:
Respiratory Acidosis	4	1	1	N	Kidneys retain bicarbonate & excrete hydrogen	Pneumonia, emphysema
Respiratory	1	\checkmark	1	N	Reverse of respiratory	Hyperventilation,

Alkalosis					acidosis	early salicylate poisoning
Metabolic Acidosis	•	Ν	N	¥	Hyperventilate (CO ₂ blew off)	Diabetic ketoacidosis, renal disease and prolonged diarrhea
Metabolic Alkalosis	1	Ν	N	1	Hypoventilation (CO ₂ retention)	Vomiting, antacids, NaHCO₃ infusion

EVALUATING ACID-BASE DISORDERS

- 1. Determine if the pH is high (alkalosis) or low (acidosis)
- **2.** Compare pCO_2 and HCO_3 to normal values
 - ✓ If pCO₂ is opposite to pH = respiratory
 - ✓ If HCO₃ is in the same direction with pH = metabolic
- 3. If pH is within normal range, full compensation has occurred
- **4.** if main compensatory mechanism has already occurred yet the pH is still out of range, **partial compensation** happened.

NORMAL VALUES

- pH: **7.35 7.45**
- pCO₂: **35-45 mmHg**
- pO₂: **81-100 mmHg**
- HCO3: 21-28 mEq/L
- TCO₂: arterial (19-24 mmol/L); venous (22-26 mmol/L)
- H₂CO₃: **1.05-1.035 mmol/L**
- O₂ saturation: **94-100%**

COMMON SOURCES OF ERROR

Error	pCO2	рН	pO2	Effect
Sample sitting at room temperature for more than 30	1	1	\checkmark	Acidosis
mins				
Bubbles in syringe, uncapped specimen	1	1	\uparrow	Alkalosis
Hyperventilation				Alkalosis
Specimen exposed to air				Alkalosis

SAMPLE:

- 1. pH = 7.25, pCO₂ = 42 and HCO₃ = 16
 - ✓ determine acid-base status

AMINES

ENDOCRINOLOGY

• study of endocrine glands and the hormones they secrete

HORMONES

• are chemical signals that are secreted by cells into the blood stream that travels to its target tissues

POSITIVE FEEDBACK

An increase in the hormone product results to an elevated activity (another hormone production) of the system

NEGATIVE FEEDBACK

A decrease in the hormone product results to a decreased activity (another hormone production) of the system

CLASSIFICATION OF HORMONES

CLASSIFICATION	EXAMPLE
PEPTIDES/POLYPEPTIDES	
Water soluble	
A. GLYCOPROTEIN	HCG, TSH, EPO, FSH
B. POLYPEPTIDES	ADH, GH, ACTH, Prolactin
STEROIDS	
• Synthesized from	Aldosterone, Estrogen, Cortisol, Progesterone,
cholesterol	Testosterone, Vitamin D
Insoluble	

GLAND	HORMONES	INFORMATION
Hypothalamus	Releasing	TRH – regulates production of TSH and
	Hormones	prolactin
		GnRH – regulates production of LH and FSH
		GHRH – regulates production of GH
		CRH – regulates production of ACTH
	Somatostatin	Inhibitor of GH and TSH production
	Dopamine	Prolactin release inhibitor
Anterior pituitary	GH	Most abundant pituitary hormone
		Gigantism: increase (excess) in GH before
		the closure of epiphyseal plate
		Acromegaly: increase (excess) in GH after
		the closure of epiphyseal plate
		Dwarfism: a deficiency of GH
	Prolactin	Initiates and maintains lactation
		Highest levels at 4am, 8am, 8pm and 10pm
		Prolactinoma: most common type of
		functional pituitary tumor
	TSH	Stimulation for the production of T3 and T4
	LH	For secretion of progesterone; for ovulation
	ACTH	Stimulation for the production of
		adrenocortical steroid formation and
		secretion
	FSH	For secretion of estrogen
		For development of seminiferous tubules;
		spermatogenesis
Posterior pituitary	Oxytocin	Stimulates contraction of the uterine
~ only releases		"Fergusson reflex"
hormones (doesn't		Also acts in parturition and in transport of

Epinephrine, norepinephrine, T3, T4, melatonin

PROPERTY OF MEDTECH REVIEW NOTES24 | P a g e

produce)		sperm
		Also, for milk ejection (suckling
		asstimulator)
	ADH	Aka vasopressin
		For water balance and blood pressure
		elevation
		Deficiency: diabetes insipidus
Thyroid gland	T3 and T4:	For metabolism
	produced by	There are more T4 than T3
	follicular cells	T3 is more biologically active
		Primary hyperthyroidism (Graves' disease)
		 ✓ increased T3 and T4 but decreased TSH
		 ✓ presence of anti-TSH receptor antibody
		Secondary hyperthyroidism: both FT4 and
		TSH are increased
		Primary hypothyroidism (Hashimoto's
		thyroiditis)
		✓ increased TSH but decreased T3 and
		T4
		✓ presence of anti-TPO antibody
		Myxedema: manifestation of Hashimoto's
		disease
	Calcitonin:	A calcium and phosphate regulator
	produced by	
	parafollicular	
	cells	
Parathyroid gland:	РТН	Produced and secreted by chief cells of
smallest gland in the		parathyroid gland
body		For bone resorption

		Primary hyperparathyroidism: increased
		ionized calcium
		Secondary hyperparathyroidism: decreased
		ionized calcium
Adrenal gland	Cortisol	Secreted by zona fasciculate
		Highest levels in: 6am-9am
		Lowest levels: 11pm-3am
		Cushing's syndrome: increased levels of
		cortisol and ACTH but decreased levels of
		aldosterone and renin are notable
		✓ screening test: 24hr urine free
		cortisol test
		 Confirmatory: low dose
		dexamethasone suppression test and
		CRH stimulation test
		Cushing's disease: increased levels of ACTH
		due to tumor on the pituitary gland
		Methods: Porter-Silber reaction
		(corticosteroids); + reaction = yellow
		pigment
		Zimmerman reaction (ketosteroids) +
		reaction = reddish purple color
	Aldosterone	Secreted by zona glomerulosa
		Most important mineralocorticoid
		Responsible to Na+ and K+ retention
		Barterr's syndrome: there is a defect in the
		kidney's ability to reabsorb sodium
		Conn's syndrome (1' hyperaldosteronism):
		there is hypokalemia and hypernatremia
		Liddle's syndrome: there is an excess
		sodium reabsorption and excretion of
		potassium due to defect in the DCT

PROPERTY OF MEDTECH REVIEW NOTES25 | P a g e

	Catecholamines	Secreted in medulla
		80% epinephrine, 20% norepinephrine
		Pheochromocytoma: tumor that results to
		overproduction of catecholamines
Reproductive glands	Testosterone	Principal androgen in the blood
		Most potent male androgen
		Synthesized by the Leydig cells
	Estrogen	Estrone: most abundant in menopausal
		women
		Estradiol: most potent; most abundant in
		pre-menopausal women
		Estriol: major estrogen detected during
		pregnancy; produced by placenta; marker
		for down syndrome
		Kober reaction: used to analyze estrogens
	Progesterone	Single best hormone to evaluate if ovulation
		has occurred
Pancreas	Insulin	Hypoglycemic agent
	Glucagon	Hyperglycemic agent

METABOLITES OF HORMONES!

- Dopamine: Homovanilic acid
- Serotonin: 5-HIAA
- Epinephrine: Vanillyl mandelic acid and metanephrine
- Norepinephrine:
 - ✓ Urine: 3-methoxy-4-hydroxyphenylglycol
 - ✓ Blood: vanillyl mandelic acid

TOXICOLOGY

TOXIC AGENTS

- Alcohol
 - ✓ Ethanol (grain alcohol): most commonly abused chemical substance

STAGES OF IMPAIRMENT			
BLOOD ALCOHOL (% w/v)	SIGNS AND SYMPTOMS		
0.01 – 0. 05	No obvious impairment, some changes observable on		
	performance testing		
0.03 - 0.12	Mild euphoria, decreased inhibitions, some impairment		
	of motor skills		
0.09 – 0.25	Decreased inhibitions, loss of critical judgment, memory		
	impairment, diminished reaction time		
0.18 - 0.30	Mental confusion, dizziness, strongly impaired motor		
	skills (staggering, slurred speech)		
0.27 – 0.40	Unable to stand or walk, vomiting, impaired		
	consciousness		
0.35 – 0.50	Coma and possible death		
>0.10 – PRESUMPTIVE EVIDENCE OF DRIVING UNDER ALCOHOL INFLUENCE			

- Cyanide
 - ✓ Odor of bitter almonds
- Arsenic
 - ✓ Odor of garlic; keratinophilic
- Carbon monoxide
 - ✓ Odorless, colorless and tasteless gas
 - ✓ Binds to hemoglobin 250 times (in terms of affinity) as compared to oxygen
 - ✓ Makes blood cherry-red in color

• Mercury

✓ Nephrotoxic and can bind myelin (in neurons)

- Lead
 - ✓ Specimen of choice: whole blood
 - ✓ Inhibits enzymes D-ALA synthetase & pyrimidine-5'-nucleotidase
- Organophosphates
 - ✓ Found in insecticides and pesticides
 - ✓ Hepatotoxic
 - ✓ Can inhibit enzyme acetylcholinesterase

DRUGS OF ABUSE			
DRUG METABOLITE			
Amitriptyline	Nortryltyline		
Cocaine	Benzoylecgonine		
Heroin	Morphine		
Marijuana	Tetrahydrocannabinol		
Primodine	Phenobarbital		
Procainamide	NAPA		

TOXIC DRUG MONITORING

DEFINITION OF TERMS:

- Pharmacodynamics: what the drugs do to the body
- Pharmacokinetics: what the body does to the drug (biotransformation, distribution, metabolism and elimination)
- First pass metabolism: drugs enter the hepatic route first before entering the general circulation
- Half-life: time needed for a drug's concentration in serum to decrease into half
- Peak specimen: collection of this is done 30-60 mins after the administration of drug
- Trough specimen: this is collected **before** administration of the succeeding dose

CLASSIFICATION OF DRUGS	REPRESENTATIVE DRUGS
Antibiotics	Aminoglycosides, chloramphenicol, vancomycin
Anticonvulsants	Ethosuximide, Carbamazepine, Phenytoin, Phenobarbital,
	Valproic acid
Antidepressants	Lithium, Fluoxetine and tricyclic antidepressants
Anti-inflammatory/analgesics	Aspirin, acetaminophen
Anti-neoplastic	Busulfan, methotrexate
Bronchodilators	Theohylline
Cardioactive	Digoxin, Procainamide, Lidocaine, Propanolol, Quinidine
Immunosuppressives	Tacrolimus (FK-506), Prednisone, Cyclosporine
GOOD TO KNOW FOR THE DRU	JGS:

- - $\checkmark~$ Aspirin: drug that inhibits ${\bf cyclooxygenase}$
 - ✓ Acetaminophen: hepatotoxic drug
 - \checkmark Lithium: for treatment of bipolar disorder or manic depression

- ✓ Phenobarbital: used for treatment of grand-mal
- ✓ Valproic acid: for treatment of petit mal
- ✓ Vancomycin: cause of **red man syndrome**

CONVERSION FACTORS

(derived from Clinical Chemistry Handbook of Dean Maria Teresa T. Rodriguez, RMT, MAEd, MSMT)		
ANALYTES	CONVENTIONAL UNITS TO SI UNITS	CONVERSION FACTOR
ALBUMIN	g/dL to g/L	10
PHOSPHOLIPID		0.01
TOTAL PROTEIN		10
AMMONIA	μg/dL to μmol/L	0.587
THYROXINE	μg/dL to nmol/L	12.9
BICARBONATE	mEq/L to mmol/L	1.0
CHLORIDE		1.0
MAGNESIUM		0.5
POTASSIUM		1.0
SODIUM		1.0
LITHIUM	mEq/L to μmol/L	1.0
BUN	mg/dL to mmol/L	0.357
CALCIUM		0.25
CHOLESTEROL		0.026
GLUCOSE		0.0555
PHOSPHORUS		0.323
TRIGLYCERIDE		0.0113
URIC ACID		0.0595
BILIRUBIN	mg/dL to μmol/L	17.1
CREATININE		88.4
IRON		0.179
pCO ₂	mm/Hg to kPa	0.133

PROPERTY OF MEDTECH REVIEW NOTES28 | P a g e

pO₂

0.133

REFERENCES:

Henry's Clinical Diagnosis and Management by Laboratory Methods

Clinical Chemistry: Principles, Procedures and Correlations by Michael Bishop

Clinical Chemistry Review Handbook for Medical Technologists by Dean Maria Teresa T. Rodriguez, RMT, MAEd, MSMT

Clinical Chemistry Notes of Mr. Errol E. Coderes RMT, IMLT, MLS (ASCPi)^{CM}

Clinical Chemistry Checkpoint notes of Ms. Judea Marie Policarpio, RMT

Intensive Review Notes of University of the Immaculate Conception – Medical Laboratory Science Program

PROPERTY OF MEDTECH REVIEW NOTES30 | P a g e